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Agent-based microsimulation models of socioeconomic processes require an initial

synthetic population derived from census data. This thesis builds upon the Iterative

Proportional Fitting (IPF) synthesis procedure, which has well-understood statistical

properties and close links with log-linear models. Typical applications of IPF are lim-

ited in the number of attributes that can be synthesized per agent. A new method is

introduced, implementing IPFwith a sparse list-based data structure that allowsmany

more attributes per agent. Additionally, a new approach is used to synthesize the re-

lationships between agents, allowing the formation of household and family agents in

addition to individual person agents. Using these methods, a complete population of

persons, families, households and dwellings was synthesized for the Greater Toronto

Area and Hamilton.
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Chapter 1

Introduction

Traditional efforts to model transportation in large city regions operated at an aggre-

gate level, splitting the urban area into a small number of zones and forecasting trips

between these zones. The classic four-stage Urban Transportation Modelling System

(UTMS) is a common example, including a gravity model to distribute trips between

zones.

Aggregate models suffer from limited sensitivity to interesting policy questions

[51]. While aggregate approaches can be suitable for projecting a continuation of cur-

rent trends, they are unable to anticipate the effects of many major policy changes.

For example, it would be difficult to model the effects of introducing road pricing or

urban growth boundaries, or to project the response to major structural changes in the

economics of transportation.

Disaggregate models may prove more suitable for tackling such questions, by

modelling the behaviour of individual persons and households. While it is hard to

understand the behaviour of a large group of persons with only aggregate statistics

about these persons, behaviour is easier to grasp at the level of the individual person

or household. Disaggregate models do not aim to predict the behaviour of individuals,

but to understand behaviour at that level and use it to make accurate projections at

1



CHAPTER 1. INTRODUCTION 2

the aggregate level.

Agent-based microsimulation models represent the finest level of disaggregation

in current practice. These models forecast the future state of an aggregate system by

simulating the behaviour of a number of individual agents over time. In travel demand

modelling, the system is usually the spatial arrangement of travel patterns (including

the mode of travel used), and the agents are usually persons, families or households.

The execution of such a model can be divided into two steps: the creation of an initial

set of agents, describing each agent and the system’s state at some initial time; and a

series of subsequent steps forward, where the state of each agent and the system as a

whole is advanced by a timestep (for example, one year per step).

The construction of the initial set of agents is often known as population synthesis,

since a “population” of agents must be created. Data is typically not available for

the true persons and their attributes at the initial time; hence the initial population is

synthetic. A good representation is critical to support a good microsimulation model;

“Garbage In, Garbage Out,” is a common phrase in computer science, implying that a

good method will still produce bad results if its input is poor.

When analyzing behaviour at the level of individual persons, it is possible to ob-

serve and model interesting connections between persons. For example, members of

a family do not act entirely independently; they share resources and may choose to

travel together in a single vehicle, to adjust their travel patterns to suit each others’

schedules, or to make decisions about home ownership based on all family members’

needs. However, to represent both individual behaviour and family-level behaviour

in an agent-based framework, the relationships between individual persons must be

known to form family units.

This thesis focuses on these problems, examining the methods necessary to con-

struct a complete population of persons, families and households for the Integrated

LandUse, Transportation and Environment (ILUTE)modelling effort at the University
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of Toronto. In particular, much of the thesis is concerned with the Iterative Propor-

tional Fitting (IPF) method, a data fusion technique that underlies most population

synthesis procedures. While the ILUTE model is the specific context for this thesis,

the methods and discussion are relevant to a broader audience. It should be useful to

anyone performing agent-based simulation using census data, and may provide new

insights to anyone using Iterative Proportional Fitting procedure for data fusion.

The remainder of this thesis is structured as follows. First, a review of the previous

work is conducted, covering the ILUTE model, a discussion of the mathematics and

notation used for fitting contingency tables, and earlier population synthesis proce-

dures. In the following chapter, the data used for synthesis here is reviewed, includ-

ing definitions of the agents, attributes, and population universes. Chapter 4 takes a

“brainstorming” approach to some of the problems with existing population synthesis

procedures, and discusses some potential improvements to established method. This

carries directly into the following chapter, which covers the implementation of the

ILUTE population synthesizer, including a detailed application of many of the new

ideas. Subsequently, the next chapter uses this implementation to conduct a series of

experiments to evaluate the new methodological ideas. The final chapter looks at the

results of the final synthesis, and summarizes the results of the thesis.



Chapter 2

Previous Work

The research described in this thesis draws on a broad body of knowledge. This liter-

ature review begins with a section on the context for this population synthesis effort,

the Integrated Land Use Transportation, Environment (ILUTE) model.

The following section describes the mathematics and algorithms used in popula-

tion synthesis, starting with a discussion of notation for contingency tables. The prop-

erties and history of the Iterative Proportional Fitting (IPF) procedure are reviewed,

and some generalizations of the method are discussed in the following section. The

discussion then shifts to log-linear modelling for contingency tables, and then looks

briefly at the literature connecting IPF and log-linear modelling. The final section re-

views the literature dealing with zeros in contingency tables.

The review then shifts to the methods used for population synthesis. Two broad

classes of method are included: those using IPF and those using the Combinatorial

Optimization method.

4
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Figure 2.1: The idealized integrated urban modelling system envisioned by Miller,

Kriger & Hunt [34].

2.1 The ILUTE Model

The ILUTE research program aims to develop next generation models of urban land

use, travel and environmental impacts. The project’s ultimate goal is the “idealmodel”

described byMiller et al. [34]. As shown in Figure 2.1, the behavioural core of an ideal

model would include land development, residential and business location decision,

activity/travel patterns and automobile ownership. The boxes on the left show the

main influences on the urban system: demographic shifts in the population, the re-

gional economy, government policy and the transport system itself. Some of these

may be exogenous inputs to the model, but Miller et al. suggest that both demograph-

ics and regional economics need to be at least partially endogenous.

The ILUTE model is intended to operate in concert with an activity-based travel

demand model. The Travel/Activity Scheduler for Household Agents (TASHA) is

an activity-based model designed on disaggregate principles similar to ILUTE, and
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connects personal decision making with household-level resources and activities to

form travel chains and tours [35, 36].

The operational prototype of the ILUTE system was described in detail by Salvini

& Miller [40, 39]. To validate the model, it is intended to be run using historical data,

allowing comparison against the known behaviour of the urban system over recent

years. The baseline year of 1986 was ultimately chosen as a starting point, since the

Transportation Tomorrow Survey of travel behaviour in the Greater Toronto Area was

first conducted in that year.

The prototype defines a wide range of agents and objects: persons, households,

dwellings, buildings, business establishments and vehicles. It also defines various

relationships between these agents and objects: in particular, family relationships be-

tween persons in households, occupancy relationships between households and their

dwellings, ownership of dwellings/vehicles by households or persons, containment

of dwellings within buildings, and employment of persons by business establish-

ments.

These represent the full spectrum of possible agents and relationships that need to

be synthesized as inputs to the ILUTEmodel. In earlier work within the ILUTE frame-

work, Guan synthesized persons, families and households and a set of relationships

between them [25]. In this thesis, the same agents and relationships are considered (in

addition to dwelling units), with the goal of improving the method and quality of the

synthetic populations.

The remaining agents and relationships are also important to the ILUTEmodel, but

the focus here is on the demographic and dwelling attributes since these are central

to both the ILUTE and TASHA models, and because rich data from the Canadian

census is available to support the synthesis. In this research, families are proposed as

a new class of agent for the ILUTEmodelling framework. While the family is a central

theme in both the ILUTE and TASHA models, it was only modelled distinct from the
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household in Guan’s work. Furthermore, the original ILUTE prototype did not allow

for multifamily households.

2.2 Mathematics for Fitting Contingency Tables

Almost all population synthesis procedures rely on data stored in multiway contin-

gency tables. To help understand and explain this type of data, a consistent notation

is first defined, and then the mathematical properties of contingency tables and the

Iterative Proportional Fitting procedure are described.

2.2.1 Notation

Throughout this document, scalar values and single cells in contingency tables will be

represented using a regular weight typeface (e.g., n or nijk). Multiway contingency

tables and their margins will be represented with boldface (e.g., n or nijk) to indicate

that they contain more than one cell. Contingency tables may be one-way, two-way or

multiway; the number of subscripts indicates the dimension of the table (e.g., nijk).

Suppose three variables X , Y and Z vary simultaneously, and are classified into

I , J and K categories respectively. The variables may be either inherently discrete

or continuous, but continuous variables are grouped into a finite set of discrete cat-

egories. The variable i denotes a category of X , and the categories are labelled as

{1, 2, . . . , I}, and likewise for Y and Z. (For example, suppose that these variables

represent the attributes of a person, such as age, education and location.) Then, there

is a probability πijk that a random observation will be classified in category i of the

first variable, category j of the second variable and category k of the third variable.

There are C = I × J × K cells in the table, each of which consists of a count nijk of

the number of observations with the appropriate categories. Since the table consists

of counts, the cells are Poisson distributed; these counts are observations of the under-
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Figure 2.2: The link between list-based and contingency table representations of mul-

tivariate categorical data. Left: a list of observations, where each row represents a

single observation. Variables X , Y and Z are observed to fall into different categories.

Right: a cross-tabulation of the observations using only variables X and Y . Each cell

nij in the table is a count of observations with a given value X = i and Y = j. It

corresponds to a specific set of nij observations from the list-based representation.

lying multinomial probability mass function πijk. The contingency table has a direct

relationship to the list of observations; Figure 2.2 shows an example where a list of

observations of three variables is used to form a two-variable contingency table.

Any contingency table can be collapsed to a lower-dimensional table by summing

along one or more dimensions; a collapsed table is called a marginal table or margin.

The notation ni++ is used for the margin where the second and third variables are

collapsed, leaving only the breakdown of the sample into the I categories of variable

X . The + symbols in the notation indicate that the margin is derived by summing nijk

over all categories j and k. The total size of the tabulated sample is given by n+++, or

more typically by n alone.

In this paper, multiple contingency tables are often considered simultaneously. In

a typical application of the Iterative Proportional Fitting (IPF) procedure, a “source”

population is sampled and cross-classified to form a multiway table nij . A similarly

structured multiway table Nij is desired for some target population, but less infor-

mation is available about the target: typically, some marginal totals Ni+ and N+j are

known. (Depending upon the application, the target and source populations may
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Figure 2.3: An illustration of the Iterative Proportional Fitting procedure with two

variables X and Y . The source table nij is modified to match the known target

marginals Ni+ and N+j , producing a fitted table N̂ij that approximates the unknown

target table Nij .

be distinct or identical; in a common example, the populations are identical but the

source sample is small (1–5%) while the target margins may be a complete 100% sam-

ple of the population.) The complete multiway table Nij of the target population is

never known, but the IPF procedure is used to find an estimate N̂ij . This is achieved

through repeated modifications of the table nij . The entire process and associated

notation are shown in Figure 2.3 and Table 2.1.

Note that the source table nij and target margins Ni+ are usually integer counts,

but the estimated target table N̂ij produced by Iterative Proportional Fitting is real-
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Symbol Description

C The total number of cells in the contingency table, C = I × J × K.

I, J,K The number of categories for variables X , Y and Z respectively, the

three dimensions of the multiway tables.

nijk or n Amultiway contingency table of the source sample, of size I×J×K.

n The size of the source sample. i.e.,
∑

i,j,k nijk

nijk A single cell of n, containing the count of observations in the source

sample where variable X was in category i, Y was in category j and

Z was in category k.

Nijk or N A multiway contingency table of the target population, of the same

size as n; never observed.

N The size of the target population.

Nijk A single cell in target table N; never observed.

Ni++ A one-way table containing a margin of Nijk showing the total ob-

servations for each category i of variable X . While the full table Nijk

of the target population is never observed, some margins are known.

Ni++ A single entry in Ni++. The + symbols indicate a sum over all cate-

gories in that dimension; that is, Ni++ =
∑

j,k Nijk.

Nij+ The two-way table containing a margin of N, showing the total ob-

servations for each category i of variable X and each category j of

variable Y .

N̂ijk or N̂ The IPF estimate of the target multiway table N, using the initial

association pattern in source table n and adjusting it to exactly fit a

selected set of margins Ni++ (etc.)

N̂ijk A single cell in the IPF estimate N̂.

πijk (or πijk) Table (or cell) of probabilities instead of counts, E[nijk] = nπijk

Πijk (or Πijk) Table (or cell) of probabilities instead of counts, E[Nijk] = NΠijk

X or X(i) A variable split into I categories, making up the first dimension of

each multiway contingency table.

Y or Y (j) A variable split into J categories.

Z or Z(k) A variable split into K categories. In most cases here, Z will specifi-

cally refer to geographic zones.

Table 2.1: Summary of the notation used for multiway tables and IPF. IPF is used to

estimate a multiway contingency table for an unknown target population, by modify-

ing a table of a source sample to match known margins of the target population. The

notation shown is for three variables X,Y, Z, but more can be used.
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Input: Source table nij , target margins Ni+ and N+j , and tolerance ǫ

Output: Fitted table N̂
(τ)
ij

τ = 0;1

N̂
(τ)
ij = nij ;2

repeat3

forall i,j do4

N̂
(τ+1)
ij = N̂

(τ)
ij

(

Ni+/N̂
(τ)
i+

)

;5

end6

forall i,j do7

N̂
(τ+2)
ij = N̂

(τ+1)
ij

(

N+j/N̂
(τ+1)
+j

)

;8

end9

δ = max

(

max
i

∣

∣

∣
N̂

(τ+2)
i+ − Ni+

∣

∣

∣
, max

j

∣

∣

∣
N̂

(τ+2)
+j − N+j

∣

∣

∣

)

;
10

τ = τ + 211

until δ < ǫ ;12

Figure 2.4: A simple example algorithm for the Iterative Proportional Fitting pro-

cedure using a two-way table and one-way target margins.

valued.

2.2.2 History and Properties of Iterative Proportional Fitting

The Iterative Proportional Fitting (IPF) algorithm is generally attributed to Deming

& Stephan [16]. (According to [14], it was preceded by a 1937 German publication

applying the method to the telephone industry.) The method goes by many names,

depending on the field and the context. Statisticians apply it to contingency tables and

use the terms table standardization or raking. Transportation researchers use it for trip

distribution and gravity models, and sometimes reference early papers in that field by

Fratar or Furness [15, 23]. Economists apply it to Input-Output models and call the

method RAS [32].

The IPF algorithm is a method for adjusting a source contingency table to match

known marginal totals for some target population. Figure 2.4 shows a simple appli-
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cation of IPF in two dimensions. The table N̂(τ) computed in iteration τ + 1 fits the

row totals exactly, with some error in the column totals. In iteration τ + 2, an ex-

act fit to the column margins is achieved, but with some loss of fit to the row totals.

Successive iteration yields a fit to both target margins within some tolerance ǫ. The

procedure extends in a straightforward manner to higher dimensions, and also with

higher-dimensional margins.

Deming and Stephan [16] initially proposed the method to account for variations

in sampling accuracy. They imagined that the source table and target marginals were

measured on the same population, and that the marginal totals were known exactly,

but the source table had been measured through a sampling process with some inac-

curacy. The IPF method would then adjust the sample-derived cells to match the more

accurate marginal totals. They framed this as a fairly general problem with a d-way

contingency table, and considered both one-way margins and higher-order margins

(up to d − 1 ways). They did not consider the effect of zero values in either the initial

cell values or the margins.

Deming and Stephan claimed that the IPF algorithm produces a unique solution

that meets two criteria. It exactly satisfies the marginal constraints

∑

j

N̂ij = Ni+,
∑

i

N̂ij = N+j (2.1)

and they believed that it minimized the weighted least-squares criterion

∑

i

∑

j

(nij/n − N̂ij/N)2

nij

(2.2)

In a later paper, Stephan realized that IPF only approximately minimized that crite-

rion [50]. He proposed a different algorithm that minimized the least-squares crite-

rion. However, Ireland and Kullback [30] returned to the original IPF algorithm and

found that it had interesting properties. They showed that the N̂ij estimated by the IPF

method minimizes the discrimination information criterion (also known as the Kullback-

Leibler divergence, or relative entropy) [33, 14]. This is conventionally defined in terms of
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probabilities πij and Π̂ij ,

I(Π̂‖π) =
∑

i

∑

j

Π̂ij log(Π̂ij/πij) (2.3)

For the sake of discussion, it can be translated to counts by substituting N̂ij = NΠ̂ij

and nij = nπij

I(N̂‖n) = I(Π̂‖π)

= log (n/N) +
1

N

∑

i

∑

j

N̂ij log(N̂ij/nij) (2.4)

=
1

N

(

−N log (N/n) +
∑

i

∑

j

N̂ij log(N̂ij/nij)

)

(2.5)

For constant target population size N , this is equivalent to minimizing

∑

i

∑

j

N̂ij log(N̂ij/nij) (2.6)

Note that discrimination information is not symmetric, since I(N̂‖n) 6= I(n‖N̂) in

general.

Ireland and Kullback included a proof of convergence. It omitted one step, and

was corrected by Csiszár in a 1975 paper [13]. Csiszár’s treatment was somewhat

more general than previous papers. In particular, he adopted a convention for the

treatment of zero values in the initial cells:

log 0 = −∞, log
a

0
= +∞, 0 · ±∞ = 0 (2.7)

After adopting this convention, he proved convergence with allowance for zeros.

The IPF method is one of several ways of satisfying the marginal constraints (2.1)

while minimizing entropy relative to the source table. Alternative algorithms exist

for solving this system of equations, including Newton’s method. Newton’s method

offers the advantage of a faster (quadratic) convergence rate, and is also able to esti-

mate the parameters and variance-covariance matrix associated with the system (to be
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discussed in the following section). However, Newton’s method is considerably less

efficient in computational storage and is impractical for the large systems of equations

that occur in high-dimensional problems. Using the asymptotic Landau O() notation

conventional in computer science [11], the IPF method requires O(C) memory to fit

a contingency table with C cells, while Newton’s method requires O(C2) storage [1,

chapter 8], [20].

Additionally, the minimum discrimination information of equation (2.6) is not the

only possible optimization criterion for comparing the fitted table to the source ta-

ble. Little & Wu [33] looked at a special case where the source sample and the target

margins are drawn from different populations. In their analysis, they compared the

performance of four different criteria: minimum discrimination information, mini-

mum least squares, maximum log likelihood and minimum chi-squared. For certain

problems, other optimization criteria may offer some advantages over minimum dis-

crimination information.

In summary, the Iterative Proportional Fitting method is a data fusion technique

for combining the information from a source multiway contingency table and lower-

dimensional marginal tables for a target population. It provides an exact fit to the

marginal tables, while minimizing discrimination information relative to the source

table.

2.2.3 Generalizations of the IPF Method

Following the basic understanding of the IPFmethod in the late 1960s and early 1970s,

the method received further attention in the statistical and information theory com-

munity. As discussed earlier, Csiszár’s 1975 paper [13] was in part a correction and

generalization of Ireland & Kullback’s work. However, it also introduced a different

conception of the underlying problem. Csiszár did not represent the multiway proba-

bility distribution as a d-way contingency table with C cells. Instead, he conceived of
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I-space, a much larger C-dimensional space containing all possible probability distri-

butions for the C cells in the contingency table. He exploited the geometric properties

of this space to prove convergence of the algorithm.

The mechanics of his proof and construction of I-space would be a theoretical

footnote, except that further extensions and generalizations of the IPF method have

been made using the I-space notation and conceptualization. In I-space, the marginal

constraints form closed linear sets. The IPF algorithm is described as a series of I-

projections onto these linear constraints.

From a cursory reading of a 1985 paper by Dykstra [17], it appears that he gener-

alized Csiszár’s theory and proved convergence of the IPF method for a broader class

of constraints: namely any closed, convex set in I-space. Dykstra used a complicated

example where the cells are not constrained to equal some marginal constraint, but

the tables’ marginal total vectors were required to satisfy an ordering constraint—for

example, requiring that ni2 < ni3. Dykstra’s iterative procedure was broadly the same

as the IPF procedure: an iterative projection onto the individual convex constraints.

In other words, small extensions to the IPF method can allow it to satisfy a broader

class of constraints beyond simple equality.

Further generalizations of the IPF method are discussed by Fienberg &Meyer [20].

2.2.4 Log-Linear Models

Log-linear models provide a means of statistically analyzing patterns of association in

a single contingency table. They are commonly used to test for relationships between

different variables when data is available in the form of a simple, low-dimensional

contingency table. The method itself derives from work on categorical data and con-

tingency tables in the 1960s that culminated in a series of papers by Goodman in the

early 1970s [19]. The theory behind log-linear models is well-established and is de-

scribed in detail elsewhere [54, 1, 37]. In this section, a few examples are used to
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provide some simple intuition for their application. The notation used here follows

[54], but is fairly similar to most sources.

Consider a single two-dimensional contingency table nij containing observations

of variables X and Y . The general form of a log-linear model for such a table is

log nij = constant + row term + column term + association terms (2.8)

The log-linear name comes from this form: the logarithm of the individual cells’

counts is the dependent variable (left hand side), and this variable is modelled as a

linear sum of the parameters (right hand side). A concrete example is the model of

independence,

log nij = λ + λX(i) + λY (j) (2.9)

The subscripts here make clear the idea of a “row term”: for a given row i of table n,

each of the cells in that row of n share a single parameter λX(i); a similar effect can be

seen for the columns. This is a model of independence, in that it presumes that the

counts can be explained without including any association between variables X and

Y . The alternative model including association is

log nij = λ + λX(i) + λY (j) + λXY (ij) (2.10)

This log-linear model can be used to test for statistically significant association be-

tween X and Y in the observations in a given table nij . The null hypothesis H0 is that

the variables are independent. The hypotheses are defined as:

H0 : λXY (ij) = 0 for all i, j

H1 : λXY (ij) 6= 0 for some i, j (2.11)

If none of the association parameters are statistically different from zero, then the null

hypothesis cannot be rejected. If one or more association parameters are statistically

different from zero, then this supports the alternative hypothesis that some association



CHAPTER 2. PREVIOUS WORK 17

exists. This is a typical application of a log-linear model: to test for the existence

of association between variables in a contingency table. The association terms here

are reminiscent of interaction in Analysis of Variance (ANOVA) although there are

important differences. Wickens suggested that a two-way log-linear model is more

similar to one-way ANOVA than to two-way ANOVA [54, §3.10].

As more variables are added, higher-order association patterns such as XYZ can

be included, and the number of possible models grows. In practise, only hierarchical

models are used, where an association term XY is only included when lower-order

terms X and Y are also included. Hierarchical models are usually summarized using

only their highest-order terms. For example, the model (XY , Z) implicitly includes

X and Y terms. For a given set of variables, the model that includes all possible

association terms is called the saturatedmodel.

To ensure uniqueness, constraints are usually applied to the parameters of a log-

linear model. Two different conventions are common, and tools for estimating log-

linear models may use either convention. The ANOVA-type coding or effect coding

using the following constraints for a two-way table [37]:

∑

i

λX(i) =
∑

j

λY (j) =
∑

i

λXY (ij) =
∑

j

λXY (ij) = 0 (2.12)

while the dummy-variable coding blocks out one category for each:

λX(1) = λY (1) = λXY (1j) = λXY (i1) = 0 (2.13)

Provided that all cells are non-zero, the breakdown of parameters (and hence degrees

of freedom) in a log-linear model is quite simple. For example, a saturated model of a

two-way table consists of one constant parameter, I − 1 row parameters, J − 1 column

parameters and (I − 1)(J − 1) association parameters for a total of IJ parameters. The

presence of zeros can complicate the parameter counting substantially, however.

After estimating the parameters of a log-linear model based on observed counts
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nij , the estimated counts n̂ij are obtained. The model fits can be tested on these esti-

mates using either the Pearson statistic

X2 =
∑

i

∑

j

(nij − n̂ij)
2

n̂ij

(2.14)

or the likelihood-ratio statistic

G2 = 2
∑

i

∑

j

nij log
nij

n̂ij

(2.15)

Both of these are χ2-distributed, and hierarchically related models can be compared in

terms of fit provided that the number of degrees of freedom in the models are known.

The G2 statistic is clearly related to the discrimination information of equation (2.3).

After noting that n =
∑

i

∑

j nij =
∑

i

∑

j n̂ij , it is clear that G2 = 2nI(n‖n̂). This

formula is sometimes also known as the minimum discrimination information (MDI)

statistic [31].

Finally, the G2 statistic for the null model (log nij = λ) is related to the entropy of a

probability distribution. The formula for entropy is

H(πij) = −
∑

i,j

πij log πij (2.16)

and can be translated to a table of counts as

H(nij) = −
1

n

(

−n log n +
∑

i,j

nij log nij

)

(2.17)

The fitted null model is a uniform probability distribution, nij = n/IJ . Its G2 statistic

can be shown to equal 2n(log IJ − H(nij)).

2.2.5 IPF and Log-Linear Models

The Iterative Proportional Fitting procedure has long been associated with log-linear

analysis. Given a log-linear model and a contingency table Nijk, it is often useful

to know what the fitted table of frequencies N̂ijk would be under the model. (For
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intuitive purposes, this is the equivalent of finding the shape of the fitted line under

the model of linear regression.)

In this problem, a log-linear model is called direct if the fitted table can be expressed

as closed formulae, or indirect if the fitting can only be achieved using an iterative

algorithm. For indirect models such as (XY ,XZ ,YZ ), IPF has long been employed as

an efficient way to fit a table to the data. To achieve this, the source table nijk is chosen

to have no pattern of association whatsoever; typically, this is done by setting nijk = 1.

The target margins used by the IPF procedure are the “minimal sufficient statistics” of

the log-linear model; for example, to fit the model (XY , Z), the marginal tables Nij+

and N++k would be applied. The resulting table found by IPF is known to give the

maximum likelihood fit.

Each step of the IPF procedure adjusts all cells contributing to a givenmarginal cell

equally. As a result, it does not introduce any new patterns of association that were not

present in the source table; and the source table was chosen to include no association

whatsoever. The resulting table shows only the modelled patterns of association [54,

§5.2].

The IPF procedure is hence an important tool for log-linear modelling. Addition-

ally, log-linear models provide some useful insight into the behaviour of the IPF pro-

cedure. Stephan showed that the relationship between the fitted table N̂ijk and the

source table nijk could be expressed as

log N̂ijk/nijk = λ + λX(i) + λY (j) + λZ(k) (2.18)

when fitting to the Ni++, N+j+ and N++k margins [50, 33, 1] for some choice of λ

parameters. This has the exact same form as a log-linear model, but it is not a model;

rather, with a suitable choice for the λ parameters, the formula holds exactly for every

cell. In other words, this model is sufficient to explain all of the variation between n

and the IPF estimate N̂. A similar model can be constructed for any set of margins

applied during the IPF procedure, by adding λ terms that correspond to the variables
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in the margins.

This view of the IPF procedure is mostly useful for interpreting its behaviour. IPF

modifies the source table nijk to create a fitted table N̂ijk; that change, represented

by the left hand side of equation (2.18), can be expressed using a small number of

parameters (the various λ terms). The number of parameters necessary is directly

proportional to the size of the marginal tables used in the fitting procedure; in this

case, 1 + (I − 1) + (J − 1) + (K − 1). This insight is not unique to log-linear models,

but it is perhaps easier to understand than the Lagrangian analysis used in early IPF

papers.

2.2.6 Zero Cells

The only shortcoming of the preceding discussion of IPF and log-linear models con-

cerns zeros in the source table or target margins. While Csiszár’s treatment of zeros

allows the IPF procedure to handle zeros elegantly, it remains difficult to determine

the correct number of parameters used by IPF when either the source or target tables

contain zeros.

The zeros can take the form of either structural or sampling zeros. Structural zeros

occur when particular combinations of categories are impossible. For example, if a

sample of women is cross-classified by age and by number of children, the cell corre-

sponding to “age 0–10” and “1 child” would be a structural zero (as would all higher

number of children for this age group). A sampling zero occurs when there is no a pri-

ori reason that a particular combination of categories would not occur, but the sample

was small enough that no observations were recorded for a particular cell.

Wickens provides a detailed description of the consequences of zero cells for log-

linear modelling [54, §5.6]. For high dimensional tables, the number of parameters

in a particular model becomes difficult to compute, and this in turn makes it difficult

to determine how many degrees of freedom are present. As he notes, however, “The
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degrees of freedom are off only for global tests of goodness of fit and for tests of the

highest-order interactions.” Clogg and Eliason suggested that goodness-of-fit tests are

futile when the data becomes truly sparse:

But there is a sense in which goodness-of-fit is the wrong question to

ask when sparse data is analyzed. It is simply unreasonable to expect to be

able to test a model where there are many degrees of freedom relative to

the sample size. [10]

For a small number of zeros, then, it seems that some log-linear analysis may be

possible. A sparse table with a large number of zeros, by contrast, is unlikely to be

tested for goodness-of-fit.

2.3 Population Synthesis

Microsimulation and agent-based methods of systems modelling forecast the future

state of some aggregate system by simulating the behaviour of a number of disaggre-

gate agents over time [9].

In many agent-based models where the agent is a person, family or household the

primary source of data for population synthesis is a national census. In many coun-

tries, the census provides two types of data about these agents. Large-sample detailed

tables of one or two variables across many small geographic areas are the traditional

form of census delivery, and are known as Summary Files in the U.S., Profile Tables

or Basic Summary Tabulations (BSTs) in Canada, and Small Area Statistics in the U.K.

In addition, a small sample of individual census records is now commonly available

in most countries. These samples consist of a list of individuals (or families or house-

holds) drawn from some large geographic area, and are called Public-Use Microdata

Samples (PUMS) in the U.S. and Canada, or a Sample of Anonymized Records in the

U.K. The geographic area associated with a PUMS is the Public-Use Microdata Area
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(PUMA) in the U.S., and the Census Metropolitan Area (CMA) in Canada. The pop-

ulation synthesis procedure can use either or both of these data sources, and must

produce a list of agents and their attributes, preferably at a relatively fine level of ge-

ographic detail.

In this document, the terms Summary Tables, PUMS and PUMA will be used. For

small areas inside a PUMA, the Census Tract (CT) will often be used (or more generi-

cally a “zone”), but any fine geographic unit that subdivides the PUMA could be used.

Further details about the data and definitions are presented in Chapter 3.

In most population synthesis procedures, geography receives special attention.

This is not because geography is inherently different than any other agent attribute:

like the other attributes, location is treated as a categorical variable, with a fine cat-

egorization system (small zones like census tracts) that can be collapsed to a coarse

set of categories (larger zones, like the Canadian Census Subdivisions), or even col-

lapsed completely (to the full PUMA) to remove any geographic variation. There are

two reasons why geography receives special attention: first, because census data is

structured to treat geography specially. One data set (the PUMS) provides data on

the association between almost all attributes except geography; the other (Summary

Tables) includes geography in every table, and gives its association with one or two

other variables. Secondly, geography is one of the most important variables for analy-

sis and often has a large number of categories; while an attribute like age can often be

reduced to 15–20 categories, reducing geography to such a small number of categories

would lose a substantial amount of variation that is not captured in other attributes.

For transportation analysis, a fine geographic zone system is essential for obtaining a

reasonable representation of travel distances, access to transit systems, and accurate

travel demand. As a result, geography is usually broken up into hundreds of zones,

sometimes more than a thousand.
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Figure 2.5: A zone-by-zone application of IPF for population synthesis, including a

Monte Carlo integerization stage. The source table can either be constant (X indepen-

dent of Y ), or created by cross-classifying a PUMS (shown here). Zone κ is synthesized

without consideration of other zones, and under the assumption that its association

pattern is the same as the pattern in the PUMS. After integerization, the table no longer

exactly fits the margins.

2.3.1 Zone-by-Zone IPF

The Iterative Proportional Fitting method is the most popular means for synthesizing

a population. The simplest approach is to consider each small geographic zone in-

dependently. Suppose that the geographic zones are census tracts contained in some

PUMA. Further, suppose that each agent needs two attributes X(i) and Y (j), in addi-

tion to a zone identifier Z(k). An overview of the process is shown in Figure 2.5.

The synthesis is conducted one zone at a time, and the symbol κ denotes the zone

of interest. In the simplest approach, the variables X and Y are assumed to have no

association pattern (i.e., they are assumed to vary independently), and hence the initial

table nijκ is set to a constant value of one. The summary tables provide the known

information about zone κ: the number of individuals in each category of variable X

can be tabulated to form Ni+κ, and likewise with variable Y to give N+jκ. These are
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used as the target margins for the IPF procedure, giving a population estimate for

zone κ.

However, the variables X and Y are unlikely to be independent. The PUMS pro-

vides information about the association between the variables, but for a different pop-

ulation: a small sample in the geographically larger PUMA. As discussed by Beckman,

Baggerly & McKay [4], under the assumption that the association between X and Y

in zone κ is the same as the association in the PUMA, the initial table nijκ can be set to

a cross-classification of the PUMS over variables X(i) and Y (j). IPF is then applied,

yielding a different result.

The IPF process produces a multiway contingency table for zone κ, where each cell

contains a real-valued “count” N̂ijκ of the number of agents with a particular set of at-

tributes X = i and Y = j. However, to define a discrete set of agents integer counts

are required. Rounding the counts is not a satisfactory “integerization” procedure for

three reasons: the rounded table may not be the best solution in terms of discrimina-

tion information; the rounded table may not offer as good a fit to margins as other

integerization procedures; and rounding may bias the estimates.

Beckman et al. handled this problem by treating the fitted table as a joint proba-

bility mass function (PMF), and then used N Monte Carlo draws [24] from this PMF

to select N individual cells. These draws can be tabulated to give an integerized ap-

proximation N̂′ of N̂. This is an effective way to avoid biasing problems, but at the

expense of introducing a nondeterministic step into the synthesis.

Finally, given an integer table of counts, individual agents can be synthesized us-

ing lookups from the original PUMS list. (See Figure 2.2 for an illustration of the link

between the list and tabular representations.) Beckman et al. observed an important

aspect of this process: if nij is zero (i.e., no records in the PUMS for a particular com-

bination of variables), then the fitted count N̂ijκ will be zero, and this carries through

to the integerized count N̂ ′
ijκ. Consequently, any cell in N̂′ that has a non-zero count
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is guaranteed to have corresponding individual(s) in the PUMS.

2.3.2 Multizone IPF

Beckman, Baggerly & McKay [4] discussed the simple zone-by-zone technique and

also extended it to define a multizone estimation procedure; their approach has been

widely cited [5, 21, 2] and is described in great detail by [27]. They described a method

for using IPF with a PUMS to synthesize a set of households. Their approach ad-

dresses a weakness of the zone-by-zone method: the PUMS describes the association

pattern for a large geographic area, and the pattern within small zones inside that

area may not be identical. Consequently, Beckman et al. made no assumptions about

the association pattern of the individual zones, but instead required the sum over all

zones to match the PUMS association pattern. This approach is illustrated graphically

in Figure 2.6; their paper includes a more detailed numerical example. (The Monte

Carlo integerization step is omitted for clarity.)

This multizone approach offers an important advantage over the zone-by-zone ap-

proach. The zone-by-zone approach uses the PUMS association pattern for the initial

table, but it is overruled by the marginal constraints, and its influence on the final

result is limited. By applying the PUMS association pattern as a marginal constraint

on the IPF procedure, the multizone method guarantees that the known association

pattern in the PUMS is satisfied exactly.

2.3.3 Synthesis Examples Using IPF

Many projects have applied Beckman et al.’s methods. Most microsimulation projects

seem to use a zone-by-zone fitting procedure with a PUMS, followed by Monte Carlo

draws as described by Beckman. Few seem to have adopted Beckman’s multizone

fitting procedure, however. This may be due to storage limitations: synthesizing all
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Figure 2.6: An illustration of Beckman et al.’s fitting procedure using two attributes X and Y , plus a variable Z representing

the census tract zone within the PUMA. In the left half, Z is ignored and the PUMS is adjusted to match the summary tables;

they differ because the PUMS is derived from a smaller sample than the summary tables. In the right half, the variable Z(k)

is added to represent the K zones that make up the PUMA. A constant initial table filled with ones is used for a second IPF,

which is fitted to the summary tables and the adjusted PUMS. The summary tables now show variation of X by zone Z

(and likewise Y × Z), while the adjusted PUMS provides information about the association between X and Y .
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zones simultaneously using Beckman’s multizonemethod requires substantially more

computer memory, and would consequently limit the number of other attributes that

could be synthesized.

In terms of different agent types, Beckman et al. considered households, families

and individuals in a single unit. They segmented households into single-family, non-

family and group quarters. They then synthesized family households, including a

few individual characteristics (age of one family member) and “presence-of-children”

variables. They did not synthesize person agents explicitly, did not associate families

with dwellings, and did not synthesize the connection between families inmultifamily

households. Later work on their model (TRANSIMS) did synthesize persons from the

households [27]. Their largest table was for family households with d = 6 variables

and C = 11, 760 cells before including geography, of which 609 cells were nonzero.

Their sample was a 5% sample of a population of roughly 100,000 individuals.

Guo & Bhat [26] applied Beckman’s procedure to a population of households in

the Dallas-Fort Worth area in Texas. (It is not clear whether they used zone-by-zone

synthesis or applied Beckman’s multizone approach.) They modified Beckman’s inte-

gerization procedure by making Monte Carlo draws without replacement, with some

flexibility built into the replacement procedure in the form of a user-defined threshold.

Further, they proposed a procedure for simultaneously synthesizing households and

individuals. In their procedure, the household synthesis includes some information

about the individuals within the household: the number of persons and the family

structure. A series of individuals are synthesized to attach to the household, using the

limited known information from the synthesized household. If any of the synthetic in-

dividuals are “improbable” given the number of demographically similar individuals

already synthesized, then the entire household is rejected and resynthesized.

The linkage between households and individuals in this method remains weak,

and the procedure is fairly ad hoc. Guo & Bhat showed that the method did improve
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fit in the individual table fits during a single trial, but the results were not adequate

for any conclusive claims.

Huang&Williamson [28] implemented an IPF-basedmethod for comparison against

the Combinatorial Optimization method. They used a novel zone-by-zone synthesis

procedure. In their approach, large zones (“wards”) within a PUMA were first syn-

thesized one-at-a-time, under the assumption that each ward has the same association

pattern as the larger PUMA. The ward results were then used as the initial table for

the synthesis of finer zones (enumeration districts) within each ward. This multilevel

approach improves on the conventional zone-by-zone method.

Huang & Williamson also used an incremental approach to attribute synthesis

which they call “synthetic reconstruction” where after an initial fitting to produce four

attributes, additional attributes are added one-at-a-time. The motivation for this ap-

proach is apparently to avoid large sparse tables, and includes collapsing variables

to coarser categorization schemes to reduce storage requirements and sparsity. How-

ever, their method is complex and requires substantial judgment to construct a viable

sequencing of new attributes, by leveraging a series of conditional probabilities. Fur-

thermore, the connection to the PUMS agents is lost: the resulting population is truly

synthetic, with some new agents created that do not exist in the initial PUMS. Since

only a subset of the attributes are considered at a time, it is possible that some at-

tributes in the synthetic agents may be contradictory. Nevertheless, the analysis is

interesting, and reveals the effort sometimes expended when trying to apply IPF rig-

orously to obtain a population with a large number of attributes.

Finally, Huang & Williamson proposed a modification to the Monte Carlo proce-

dure, by separating the integer and fractional components of each cell in the multiway

table. The integer part is used directly to synthesize discrete agents, and the table of

remaining fractional counts is then used for Monte Carlo synthesis of the final agents.
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2.4 Reweighting and Combinatorial Optimization

The primary alternative to the Iterative Proportional Fitting algorithm is the reweight-

ing approach advocated by Williamson. In a 1998 paper [57], Williamson et al. pro-

posed a zone-by-zone method with a different parameterization of the problem: in-

stead of using a contingency table of real-valued counts, they chose a list representa-

tion with an integer weight for each row in the PUMS. (As illustrated in Figure 2.2,

there is a direct link between tabular and list-based representations.)

For each small zone κ within a PUMA, the zone population is much smaller than

the observations in the PUMS; that is, N++κ < n. This made it possible for Williamson

et al. to to choose a subset of the PUMS to represent the population of the zone, with

no duplication of PUMS agents in the zone. In other words, the weight attached to

each agent is either zero or one (for a single zone).

To estimate the weights, they used various optimization procedures to find the set

of 0/1 weights yielding the best fit to the Summary Tables for a single zone. They con-

sidered several different measures of fit, and compared different optimization proce-

dures including hill-climbing, simulated annealing and genetic algorithms. By solving

directly for integer weights, Williamson obtained a better fit to the Summary Tables

than Beckman et al., whose Monte Carlo integerization step harmed the fit.

Williamson et al. [57] proposed three primary reasons motivating their approach:

1. Efficiency: a list-based representation uses considerably less storage than a tab-

ular representation, particularly for a large number of attributes.

2. Flexible aggregation: due to their storage limitations, array-based approaches

often collapse finely-categorized attributes to a coarse categorization scheme.

The list-based representation allows fine categorizations which can be flexibly

aggregated into simple schemes as required. This can be done during the fitting

procedure (to align with the categorization of a constraint), or after synthesis.
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3. Linkage: after synthesis, the list of individuals can be expanded to include new

attributes from other data sources easily; cross-tabulations are more difficult to

disaggregate in a similar manner.

The last two claims are somewhat weak. It is true that many IPF procedure require

coarse categorization during fitting, in order to conserve limited memory. However,

after completion, Beckman’s approach does produce a list of PUMS records (and can

be linked to other data sources easily). Even if a coarse categorizationwas used during

fitting, it is still possible to use the fine categorization in the PUMS after synthesis.

Nevertheless, IPF does require a carefully constructed category system to make fitting

possible, and this can be time-consuming to design and implement.

The reweighting approach has three primary weaknesses. First, the attribute asso-

ciation observed in the PUMS (nij) is not preserved by the algorithm. The IPF method

has an explicit formula defining the relationship between the fitted table N̂ij and the

PUMS table nij in equation (2.18). Beckman et al.’s multizone approach also treats the

PUMS association pattern for the entire PUMA as a constraint, and ensures that the

full population matches that association pattern. The reweighting method does oper-

ate on the PUMS, and an initial random choice of weights will match the association

pattern of the PUMS. However, the reweighting procedure does not make any effort to

preserve that association pattern. While the reweighting method has been evaluated

in many ways [52, 28, 56, 38], it does not appear that the fit to the PUMS at the PUMA

level has been tested.

Secondly, the reweighting method is very computationally expensive. When solv-

ing for a single zone κ, there are n 0/1 weights, one for each PUMS entry. How-

ever, this gives rise to
(

n

N++κ

)

possible combinations; “incredibly large,” in the authors’

words [57]. Of course, the optimization procedures are intelligent enough to explore

this space selectively and avoid an exhaustive search; nevertheless, the authors re-

ported a runtime of 33 hours using an 800MHz processor [28]. Since the number of



CHAPTER 2. PREVIOUS WORK 31

permutations grows factorially with the number of individuals in the zone, it is not

surprising that the authors chose to work with the smallest zones possible (1440 zones

containing an average of 150 households each); it is possible that larger zones would

not be feasible.

Finally, the reweighting method uses n × K weights to represent a K-zone area.

This parameter space is quite large; larger, in fact, than the population itself. It is not

surprising that good fits can be achieved with a large number of parameters, but the

method is not particularly parsimonious and may overfit the Summary Tables. It is

likely that a simpler model with fewer parameters could achieve as good a fit, and

would generalize better from the 2% PUMS sample to the full population.



Chapter 3

Data Sources and Definitions

The data for this project came largely from the Canadian Census administered by

Statistics Canada. The census has been conducted every five years since 1981, and

Toronto’s travel activity survey (the Transportation Tomorrow Survey or TTS) is timed

to coincide with census years. The TTS was first conducted in 1986, and this was

therefore chosen as the baseline year for the ILUTE model and population synthesis.

The Canadian Census has been conducted as a mail-back self-administered survey

since 1971. Eighty percent of households receive a short survey known as the 2A

form, while twenty percent receive an expanded version called the 2B form. In 1986,

the census was conducted on the first Tuesday of June, which fell on the third day of

the month. The 1986 Census was Canada’s first full mid-decade census, and was very

nearly cancelled due to reduced federal government expenditure in the early 1980s. It

was reinstated, but with limited resources. As a result, some useful information was

never fully coded or tabulated, such as the place-of-work. However, the provincial

government in Ontario did pay for geocoding place-of-work for the entire province,

and some tables with geographic distributions of employment do exist, although they

can be difficult to obtain [47].

Census data is aggregated by persons, census families, or households and is re-

32



CHAPTER 3. DATA SOURCES AND DEFINITIONS 33

Figure 3.1: The major groups within the Canadian census’ person universe. The

numbers in parentheses show the size of each grouping (thousands of persons) within

the Toronto Census Metropolitan Area (CMA) in the 1986 census. Adapted from [42].

leased in three distinct forms. Profile tables are assembled for each question from the

census, showing the breakdown of responses to a single question within a geographic

area. Basic Summary Tabulations (BSTs) are cross-tabulations of two to four ques-

tions from the census, also including geographic variation. Profile table and cross-

tabulations may be derived from questions from the 2A or 2B forms, and may repre-

sent either a 100% sample or a 20% sample that has been expanded to a 100% basis.

Finally, Statistics Canada also releases Public Use Microdata (PUMS), a 2% sample of

all responses made by a person (and likewise a 1% sample of family responses and a

1–4% sample of household responses). Each PUMS data file is associated with a single

Census Metropolitan Area (CMA), a large geographic area of more than 100,000 per-

sons that acts as the equivalent of the Public Use Micro Area (PUMA) in the U.S.; the

data contains no information about spatial variation within the CMA.

The PUMS data and different summary tables may be drawn from different sam-

ples. The population of persons can be broken down into many subgroups, some of
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Sample Sample

Source Geography Universe % size

Persons

PUMS CMA Non-inst. persons 2% 67,992

BST DM86A01 CMA All persons 100% 3,427,165

BST SC86B01 CMA Non-inst. persons, age 15+ 20% 546,470

BST LF86B04 CMA Labour force 20% 395,965

BST DM86A01 CT 59.00 All persons 100% 3,745

BST SC86B01 CT 59.00 Non-inst. persons, age 15+ 20% 653

BST LF86B04 CT 59.00 Labour force 20% 482

Census Families

PUMS CMA Families in priv. dwellings 1% 9,061

BST CF86A02 CMA Families in priv. dwellings 100% 906,385

BST CF86A02 CT 59.00 Families in priv. dwellings 100% 800

Dwellings / Households

PUMS CMA Occupied private dwellings 1% 11,998

BST DW86A01 CMA Occupied private dwellings 100% 1,119,800

BST DW86B02 CMA Occupied private dwellings 20% 239,960

BST DW86A01 CT 59.00 Occupied private dwellings 100% 1,130

BST DW86B02 CT 59.00 Occupied private dwellings 20% 226

Table 3.1: Sample sizes of some data sources used for synthesis, at different levels of

geography This gives a sense of the sample size in PUMS and Summary Table data,

both at a broad geographical scale (the Toronto CMA), and at the finer scale of Census

Tracts (CT). The example CT 59.00 is a downtown zone neighbouring the University

of Toronto. The BSTs that include an “A” are drawn from the Census 2A form and

have a 100% sample, while the “B” tables have a 20% sample.
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which are shown in Figure 3.1. The 2A census form (100% sample) is collected for

the full population, while the 2B form (20% sample) is collected only for the non-

institutional population 15 years of age and over. Some summary tables are defined

on the 2A universe, where exact population counts are available. Others are defined

on the 2B universe, by expanding the 20% sample to an estimate of the complete 2B

universe. Combining data from tables derived from the 2A and 2B samples can be

challenging, because of their differing universes and errors in the 2B estimates. The

PUMS uses a different sample again; it is defined on a 2% sample of the full population

excluding institutional residents (and residents of incompletely enumerated Indian re-

serves, which are not an issue in the Toronto CMA). The sample sizes associated with

different universes and tables are summarized in Table 3.1.

The universe of persons is slightly complicated. The 1986 census excluded non-

permanent residents from all tables, which includes foreign persons present on student

authorization, employment authorization, Minister’s permits and refugee claimants.

These were included in 1991 and subsequent censuses, and do account for a size-

able fraction of the Toronto population. In 1991, there were 98,105 non-permanent

residents in the Toronto CMA (2.5% of total); assuming a similar growth rate to the

CMA as a whole, this would give approximately 89,000 in 1986. There is no data

on this population, however. Institutional collective dwellings are defined as hospi-

tals, orphanages, correctional/penal institutions and religious institutions, and the

residents of these institutions are excluded from many tables (but not the staff). Non-

institutional collective dwellings are defined as hotels, motels, tourist homes, lodging-

and rooming-houses, work camps, military camps and Hutterite colonies. Temporary

residents are persons with a usual dwelling elsewhere in Canada living temporarily

in another dwelling; they are usually treated as part of their “permanent” household.

However, some dwellings are occupied only by temporary residents, and are a sepa-

rate category from both occupied and unoccupied dwellings. Finally, foreign residents
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are foreign diplomats or military personnel stationed in Canada. Temporary, foreign

and collective (non-institutional) residents are included in most person-based tables,

but not in family, household or dwelling tables.

Statistics Canada makes some modifications to the collected census data before

publishing tables. Contradictions in the submitted form are resolved using an edit

and impute method. Furthermore, to protect the privacy of individual persons and

households, Statistics Canada applies two disclosure control techniques. In any re-

leased table, all numbers are randomly rounded (up or down) to a multiple of five and

in special cases to a multiple of ten. This is a stronger measure than many countries;

the UK and New Zealand use a multiple of three, and the American census does not

use random rounding [18]. The UK and Australian agencies apply random rounding

only to small cells, but the Canadian agency applies it to every cell in every table. In

each reported table, the individual cells and the row and column totals are rounded

independently using a procedure called Unbiased Random Rounding. The rounding

tends toward the closer multiple of five, so a count of 4 has a probability of 80% of

being rounded to 5 and a 20% probability of being rounded to 0 [55]. The alternative

is called unrestricted random rounding, where there is a fixed probability p that a cell

is rounded down, regardless of its value; typically, p = 0.5 is used.1

Finally, in geographic areas with less than forty persons, no data is released; this

is called area suppression. Additionally, in areas with less than 250 persons, no income

data is released.

1Statistics Canada is rarely explicit about which rounding technique they use, but Boudreau implies
that unbiased random rounding is used [7].
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3.1 Family and Household Definitions

The Canadian census family and household definitions are generally intuitive, but

some special cases are tricky. As the Census Handbook notes, “it is very difficult to

translate complex human relationships into tables” [42].

The census distinguishes between two types of families: the “census family” de-

fines a relationship between cohabiting adults and children, while the “economic fam-

ily” defines other types of family relationships within a single dwelling. The details of

family definition are complicated, particularly when considering cohabitingmultigen-

eration families. The household definition is straightforward, consisting of all persons

sharing a “dwelling unit;” there is a one-to-one relationship between households and

occupied dwelling units. The dwelling unit definition is slightly more complicated,

and is defined as living quarters with a private entrance from the outside or from a com-

mon hallway. More formally, Figure 3.2 graphically shows the relationship between

the different types of family membership.

“People living in the same dwelling are considered a census family only

if they meet the following conditions: they are spouses or common-law

partners, with or without never-married sons or daughters at home, or a

lone parent with at least one son or daughter who has never been married.

The census family includes all blood, step- or adopted sons and daughters

who live in the dwelling and have never married. It is possible for two

census families to live in the same dwelling; theymay ormay not be related

to each other” [49] for 1996; essentially the same as 1986 definition [42, 45].

No distinction is made between common-law and legal marriage; both are coded

as “married.” While homosexual couples are recognized to exist, the census coding

does not allow this type of family. Any household that reports a married/common-

law couple with the same sex is recoded; either they are cohabiting unmarried individ-
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Figure 3.2: A breakdown of the Canadian census’ person universe, by family mem-

bership. The numbers in parentheses show the size of each grouping in thousands,

aggregated into groupings of persons (P), dwellings/households (D), economic (EF)

and census families (CF) within the Toronto Census Metropolitan Area in 1986. Not

to scale. Adapted from [42]. ∗ Relatives other than spouse, common-law partner or

never-married sons and daughters.
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Marital Census Economic

Person Age status Relationship family family

John 63 Now married Person 1 1 A

Marie 59 Now married Wife 1 A

Julie 37 Widowed Daughter 2 A

Robert 12 Single Grandchild 2 A

Lucie 09 Single Grandchild 2 A

Marc 25 Separated Son - A

Nicole 12 Single Niece - A

Benjamin 14 Single Lodger (ward) - -

Brian 24 Now married Lodger 3 B

Janet 21 Now married Lodger’s wife 3 B

Jerry 03 Single Lodger’s son 3 B

Table 3.2: An example household containing unusual family structure. As shown in

the census family column, there are three census families here, and three persons who

are not in any census family. Marc does not belong to a census-family because he is

not a “never-married” child; Nicole is not in a census family because she is not a child

of any person in the household; and Benjamin is a foster child and is hence treated as

a lodger. The economic family column shows how these same persons can be grouped

into two economic families, plus one non-family person (Benjamin). Source: [45].

uals or the gender of one individual is changed, making it an opposite-sex marriage

[45]. Finally, foster children are treated as lodgers rather than family members. Ta-

ble 3.2 details an example household that illustrates several unusual aspects of these

family definitions.

The connection between households and families is also illustrated in Figure 3.2.

Each “private household” occupies one dwelling, in the language of the census. This

one-to-one relationship between private households and “occupied private dwellings”

means that the household PUMS can be used as a PUMS for dwellings. Occupied

private dwellings are only one part of the dwelling universe, but almost no data is

available on other types of dwellings. The missing parts of this universe are col-

lective dwellings, dwellings occupied by foreign/temporary residents, unoccupied
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Data Source (and sample size)

Attribute Description P
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AGEP Age 4∗ 16 6 6 c

CFSTAT Census Family Status 5 11

HLOSP Highest Level Of Schooling 7 6 12

LFACT Labour Force Activity 3 3 15

OCC81P Occupation 24 17

SEXP Sex 2 2 2 2 2 2 2 2

TOTINCP Total Income 11 c

CTCODE Census Tract 731 731 731 731 731 731 731

c continuous, discretized to integer; large number of categories
∗ missing breakdown for a few cells.

Table 3.3: Overview of Person attributes, showing the number of categories for the at-

tributes in each data source. Each column describes a singlemultiway cross-tabulation

derived from the given data source. The rest of the profile tables add no further infor-

mation, and are not shown.

dwellings, some marginal dwellings (e.g., cottages that are not occupied year-round),

and some dwellings under construction or conversion.2

3.2 Agent Attributes

The census offers a broad range of attributes that could be used in synthesis. Ta-

bles 3.3, 3.4 and 3.5 show the attributes selected for synthesis, and the relevant data

sources that include these attributes.

Both the Household PUMS and the Family PUMS lack information on the number

2The only data on these dwellings are province-wide, in [41] and [48].
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Data Source

(and sample size)

Attribute Description C
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AGEF Age (female) c c

AGEM Age (male) c c

CFSIZE Census Family Size 7† 7

CFSTRUC Census Family Structure 3 3 16 3†

CHILDA Number of Children 0-5 2 2 3

CHILDB Number of Children 6-14 2 2‡ 4

CHILDC Number of Children 15-17 2 ‡ 3

CHILDDE Number of Children 18-24, 25+ 2 ‡ 9

HHSIZE Household Size 8

HHNUMCF Number of Families in Household 3

LFACTF Labour Force Activity (female) 3 13 15

LFACTM Labour Force Activity (male) 13 15

NUCHILD Number of Children 6 2 2 9 8†

ROOM Dwelling # of Rooms 10 10

TENURE Tenure 2 2

CTCODE Census Tract 731 731 731

c continuous, discretized to integer; large number of categories
† inferred from other attributes
‡ 2 categories for “number of children ages 6 and higher”.

Table 3.4: Overview of Census Family attributes, showing the number of categories

for the attributes in each data source. While HHSIZE and HHNUMCF are not present

in any family tables, they are present in the Person PUMS, which can be reweighted

to a family universe for synthesis. The profile tables add no information beyond that

already in the BSTs, and are not shown.
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Data Source (and sample size)
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BUILTH Dwelling Age 8 7

DTYPEH Dwelling Type 4 4 4 4 8

HHNUEF # Econ. Fam. in HH 2 2

HHNUMCF # Cens. Fam. in HH 3 3 3 3

HHSIZE Household Size 10 10 8 8

PAYH Monthly Dwell. Cost 5 c c

PPERROOM Persons Per Room 5 5† 5†

ROOM Dwelling # of Rooms 10 10

TENURH Household Tenure 3 2 2 2 2

CTCODE Census Tract 731 731 731 731 731 731 731

c continuous, discretized to integer; large number of categories
† inferred from other attributes

Table 3.5: Overview of Household/Dwelling Unit attributes, showing the number of

categories for the attributes in each data source. Each column shows a single data

source’s coverage of different attributes. Note that HHNUMCF is missing from the

Household PUMS, but present in the Person PUMS, where it can be reweighted to a

household or economic family universe. The profile tables add no information beyond

that already present in the BSTs, and are not shown.
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of census families sharing a dwelling, and the Family PUMS also lacks information

about the household size. These attributes would be useful, but can fortunately be

derived from another source: the Person PUMS. Suppose that we consider only the

family persons in the Person PUMS, and treat each person as an observation of a cen-

sus family. Then, the attributes from the Person PUMS could be used to derive infor-

mation about census families. A similar procedure could be used to gain additional

information about households.

However, persons in large families are over-represented in the person PUMS. For

example, consider the complete population of families and persons, ignoring for the

moment the small sample in the PUMS itself. A family of eight persons is repeated

eight times in the person population, while a family of two persons is repeated twice.

Large families are thus overrepresented in the person population, but this can be cor-

rected by weighting each observation in the person population by 1/CFSIZE, the in-

verse of the family size. In the PUMS, not every member of an eight-person family

will be present in the Person PUMS, but large families will still be observed propor-

tionately more often, and the same reweighting method can be applied to correct this.

3.3 Exploration of a Summary Table

To help understand the census data (and contingency tables in general), a brief exam-

ination of a single summary table is useful. This exploration focuses on the SC86B01

table, a summary table that cross-classifies age, sex and education by zone. The study

area is the Toronto CMA, and the geography has been simplified to a set of twelve

zones. Table 3.6 shows the counts in SC86B01, excluding the geographic breakdown.

Figure 3.3 shows the same information graphically.

What are the statistical properties of this table? Is there statistically significant

association between these variables? Is there significant geographic variation? A log-
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Figure 3.3: A mosaic plot showing the breakdown of the SC86B01 summary tables:

population by sex, age and highest level of schooling. Mosaic plots are useful tools for

visualizing the breakdown of categories in low-dimensional contingency tables [22].

As usual for these plots, the area of each box represents the number of persons with

a given sex, age and schooling. The difference in age breakdown between the two

genders can be easily seen, and the differences in the schooling breakdown between

each age group can also be seen. Shading has been added to make it easier to see

similar schooling levels.
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Age

Sex Highest Level of Schooling 15–24 25–34 35–44 45–54 55–64 65+

Female Less than grade 9 6440 14330 30050 41980 47515 69550

Grades 9–13 110165 58255 52950 47170 48870 50600

High school 50930 51645 36085 22540 19300 18425

Trades and non-uni 58650 92025 68655 43035 31550 26760

University w/o degree 35570 36250 28900 13685 10005 8380

University w/ degree 18410 68395 44060 16060 8625 6340

Male Less than grade 9 8035 11575 23565 37025 41335 43465

Grades 9–13 128325 57110 41030 37470 35780 30505

High school 46955 34400 21725 14985 12580 10575

Trades and non-uni 48870 89200 69015 48350 35765 21055

University w/o degree 36505 39805 31245 15990 12240 8325

University w/ degree 14735 72130 64040 30060 18755 12105

Table 3.6: The contents of the SC86B01 summary tables: population by sex, age and

highest level of schooling. Since this table is derived from a 20% sample, these counts

have been expanded by a factor of five from the original sample.

linear model can be used to answer these questions. In the following, the variables

W (h), X(i), Y (j) and Z(k) will be used to represent gender, age, level of schooling

and zone respectively.

First, to consider statistically significant association between the variables (exclud-

ing geography), a hierarchy of models can be constructed. The final model in this

hierarchy (WXY ) defines all-way association between the non-geographic variables,

and is given by

log N̂hijk/5 = λ + λW + λX + λY + λWX + λWY + λXY + λWXY (3.1)

To test for this three-way association, the G2 statistics of model (WXY ) and the

restricted model (WX ,WY ,XY ) are compared and tested using a chi-squared distri-

bution. Because SC86B01 is derived from a 20% sample that was expanded to 100%,

the counts must be deflated by a factor of five before estimating the models. Table 3.8

shows the complete series of models leading up to (WXY ). Each model in the series
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Residual

Deviance Residual Deviance

Model New term Df (∆G2) Df (G2)

NULL 863 628862

(W ) SEXP 1 568 862 628294

(W,X) AGEP 5 40637 857 587657

(W,X, Y ) HLOSP 5 63315 852 524342

(WX , Y ) SEXP × AGEP 5 1537 847 522806

(WX ,WY ) SEXP ×HLOSP 5 4338 842 518467

(WX ,WY ,XY ) AGEP ×HLOSP 25 102424 817 416043

(WXY ) SEXP × AGEP ×HLOSP 25 3525 792 412517

Table 3.7: Series of log-linear models to test for association between gender, age and

highest level of schooling in SC86B01 table. Each row shows a model that adds one

term to the model in the previous row. (The complete model is shown using symbols

W , X and Y for compactness, but these correspond to SEXP, AGEP and HLOSP.) The

statistical significance of each model is tested using the chi-square statistic between

adjacent rows; all models are significant at the 99% level.

exhibits statistically significant improvement in fit over the previous model. Conse-

quently, we can reject the hypothesis that there is no three-way association between

gender, age and highest level of schooling.

In a second series of models, the influence of geography is included. (In this anal-

ysis, the simplified 12-zone representation of geography is used; the full 731-zone sys-

tem cannot be analyzed with a log-linear model, due to the memory requirements of

generalized linear model estimation.) Table 3.8 shows the series of log-linear models

leading up to the saturatedmodel (WXYZ ). As shown, everymodel is statistically sig-

nificant with respect to the next simplest model; we can therefore conclude that there

is significant four-way association in this dataset. Furthermore, the (WX ,WY ,XY , Z)

model describes 95% of the deviance in the data; while the higher-order geographic

associations are statistically significant, they are responsible for only a small part of

the total deviance.
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Residual

Deviance Residual Deviance

Model New term Df (∆G2) Df (G2) P (> |X|)

NULL 863 628862 0

(W ) SEXP 1 568 862 628294 0

(W,X) AGEP 5 40637 857 587657 0

(W,X, Y ) HLOSP 5 63315 852 524342 0

(W,X, Y, Z) ZONE 11 381164 841 143178 0

(WX , Y, Z) SEXP × AGEP 5 1537 836 141641 0

(WX ,WY , Z) SEXP ×HLOSP 5 4338 831 137303 0

(WX ,WY ,XY , Z) AGEP ×HLOSP 25 102424 806 34878 0

(WX ,WY ,WZ ,XY ) SEXP × ZONE 11 207 795 34671 0

(WX ,WY ,WZ ,XY ,XZ ) AGEP × ZONE 55 11130 740 23541 0

(WX ,WY ,WZ ,XY ,XZ ,YZ ) HLOSP × ZONE 55 15950 685 7591 0

(WXY ,WZ ,XZ ,YZ ) SEXP × AGEP ×HLOSP 25 3520 660 4071 0

(WXY ,WXZ ,YZ ) SEXP × AGEP × ZONE 55 304 605 3767 0

(WXY ,WXZ ,WYZ ) SEXP ×HLOSP × ZONE 55 733 550 3034 0

(WXY ,WXZ ,WYZ ,XYZ ) AGEP ×HLOSP × ZONE 275 2573 275 461 0

(WXYZ ) SEXP × AGEP ×HLOSP × ZONE 275 461 0 0 0

Table 3.8: Series of log-linear models testing association in SC86B01, including geography. Each row shows a model that

adds one term to the model in the previous row. The statistical significance of each model is tested using the chi-square

statistic between adjacent rows; all models are significant at the 99% level.
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Residual

Deviance Residual Deviance

Model New term Df (∆G2) Df (G2) P (> |X|)

NULL 863 413094

(W ) SEXP 1 0.07 862 413094 1

(W,X) AGEP 5 7 857 413088 0.23

(W,X, Y ) HLOSP 5 11 852 413077 0.05

(W,X, Y, Z) ZONE 11 381164 841 31912 0

(WX , Y, Z) SEXP × AGEP 5 2 836 31910 1

(WX ,WY , Z) SEXP ×HLOSP 5 72 831 31838 0

(WX ,WY ,XY , Z) AGEP ×HLOSP 25 280 806 31558 0

(WX ,WY ,WZ ,XY ) SEXP × ZONE 11 207 795 31351 0

(WX ,WY ,WZ ,XY ,XZ ) AGEP × ZONE 55 11130 740 20221 0

(WX ,WY ,WZ ,XY ,XZ ,YZ ) HLOSP × ZONE 55 15945 685 4276 0

(WXY ,WZ ,XZ ,YZ ) SEXP × AGEP ×HLOSP 25 205 660 4071 0

(WXY ,WXZ ,YZ ) SEXP × AGEP × ZONE 55 304 605 3767 0

(WXY ,WXZ ,WYZ ) SEXP ×HLOSP × ZONE 55 733 550 3034 0

(WXY ,WXZ ,WYZ ,XYZ ) AGEP ×HLOSP × ZONE 275 2573 275 461 0

(WXYZ ) SEXP × AGEP ×HLOSP × ZONE 275 461 0 0 0

Table 3.9: Series of log-linear models testing association in SC86B01 relative to PUMS. The left hand side of the model is the

ratio of the SC86B01 count to the PUMS count for the same cell.
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The final set of models shown in Table 3.9 simulate the effect of using IPF with a

particular set of margins from SC86B01. The left hand side follows equation (2.18),

dividing the fitted margins of SC86B01 (N̂hijk/5) by the PUMS (nhij):

log N̂hijk/5nhij = λ + λW + λX + λY + λZ + · · · (3.2)

(In practice, the PUMS term nhij is used as an offset to the generalized linear model.)

This series of models also shows statistically significant improvements, except for the

first few terms. Effectively, the series shows the amount of information that SC86B01

adds beyondwhat is already available in the PUMS. The low deviance associated with

the one-way models indicates that the 20% SC86B01 sample adds little information to

the 2% PUMS sample of these variables. Terms involving ZONE, by contrast, add

a lot of information, since the PUMS includes no geographic variation. The main

difference between Tables 3.8 and 3.9 is that the deviance associated with terms that

do not involve ZONE drops by 92% or more when the PUMS is included, and usually

drops by more than 99%. Much of the non-geographic information is already present

in the PUMS.

Furthermore, the inclusion of higher-order interactions shows diminishing returns

in terms of the explained deviance. The one-way model (W,X, Y, Z) explains 92.3%

of the deviance in the NULL model. Of the remaining 7.7% of total deviance, the

two-way model (WX ,WY ,WZ ,XY ,XZ ,YZ ) explains 86.6%. Of the final 1.0% of

total deviance, the three-way model (WXY ,WXZ ,XYZ ) explains 89.2% and the four-

way model (WXYZ ) explains the final 10.8%. The total deviance does depend on the

choice of variables and the fineness of the categories in the table, but this trend of

diminishing returns is interesting. It suggests that the available census data—largely

describing lower-order interactions, with only a few higher-order interactions, apart

from the 2%-sample PUMS—may capture the bulk of the actual information about

the population. However, this single table is clearly not sufficient to say anything

conclusive.
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In closing, this analysis has focused on a single contingency table, SC86B01. No at-

temptwasmade to find the bestmodel for SC86B01, particularly in terms ofmodel par-

simony; instead, the analysis demonstrated that statistically significant higher-order

interactions are present in the data. Furthermore, it is not possible to apply this type

of log-linear analysis to multiple contingency tables, although if multiple tables are

combined using a fitting procedure the result could be analyzed. The largest limi-

tation, however, is one of software: log-linear analysis is not generally feasible with

high-dimensional tables. Nevertheless, the analysis provides valuable insight about

the utility of information recorded in contingency tables.



Chapter 4

Method Improvements

The existing population synthesis procedures have many limitations. In this chapter,

the following concerns are discussed:

• High-dimensional contingency tables are very sparse, and the many-way asso-

ciation patterns in them have little statistical significance

• The number of attributes that can be synthesized is quite limited, for the IPF

method in particular, and also for reweighting/combinatorial optimization to a

lesser extent

• Random rounding of reported tables may influence the quality of results

• Synthesizing populations of related agents is challenging

The chapter is structured largely as a discussion of these issues, together with an

attempt to brainstorm solutions to these limitations, focusing particularly on the IPF-

based methods; not all ideas are entirely successful. The new methods are intended

to be largely independent, but most can be combined if desired. In the following

chapters, several of these new methods are implemented and evaluated.

51
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# of Cells Equal To

Attributes # Cells Median 0 1 2+

1 3 956 0.0% 0.0% 100.0%

2 6 478 0.0% 0.0% 100.0%

3 54 30 5.6% 1.9% 92.6%

4 486 0 57.8% 7.8% 34.4%

5 4374 0 84.7% 4.0% 11.3%

6 21870 0 93.9% 2.4% 3.7%

7 196830 0 98.9% 0.5% 0.6%

8 984150 0 99.7% 0.1% 0.1%

Table 4.1: Illustration of relationship between sparsity and number of

dimensions/cross-classification attributes. Reading from the top, the table shows

increasing sparsity as a sample is cross-classified using a larger number of attributes.

Alternatively, the table can be read from the bottom: starting with an 8-way contin-

gency table, one dimension is collapsed at a time, giving a progressively denser table.

By the time the 8-way table has been collapsed to a 3-way table, the majority of cells

are non-zero. Data: 1986 Census PUMS of n = 9061 families in the Toronto CMA,

cross-classified using dimensions CFSTRUC (3 categories), TENURE (2), ROOM (10),

NUCHILD (9), AGEF (9), LFACTF (5), AGEM (9) and LFACTM (5).

4.1 Simplifying the PUMS

The IPF method has been applied to tables with a large number of dimensions, as

many as eight. Such high dimensional tables are almost always sparse, with the vast

majority of the cells in the table containing zeros. (High dimensional tables are gen-

erally notorious for their difficulties and differences from two-dimensional tables; see

[12] for “ubiquitous” ill-behaved examples.) In these sparse tables, a large fraction

of the non-empty cells contain only one observation, and the number of cells is often

much larger than the number of observations. In other words, the sample does not

provide a statistically meaningful estimate of the probability distribution for such a

high dimensional table. However, the high-dimensional table can be collapsed to pro-

duce 2D or 3D tables, each of which is adequately sampled and gives a statistically
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valid distribution of counts. This is illustrated in Table 4.1, where 99.7% of the cells

are zero in the 8-way table. The two-way and three-way margins of the table shown

(CFSTRUC× TENURE and CFSTRUC× TENURE×ROOM) have 0% and 5.6% zeros, and

median cell counts of 90 and 30 respectively. Of course, an 8-way table has many

other lower-dimensional margins, and only one such choice is illustrated in Table 4.1.

(When collapsing a d-way table to d′ dimensions, there are
(

d

d′

)

possible choices of vari-

ables to keep in the low dimensional table.) Consequently, while a sparse 8-way table

does not provide statistically testable 8-variable interaction, it could be viewed as a

means of linking the many 2- or 3-way tables formed by its margins.

The cell counts in the high dimensional table say very little statistically; in fact, half

of the non-zero cells contain just one observation. The most important information in

an 8-way table is not necessarily the counts in the cells, but rather the co-ordinates of the

non-zero cells, which determine how each cell influences the various low-dimensional

margins. In this manner, the importance of the high-dimensional table is in many

ways its sparsity pattern, which provides the link between the many 2- and 3-way ta-

bles. However, the sparsity pattern in the high dimensional table is in some ways an

artefact of sampling. Some of the zeros in the table represent structural zeros: for ex-

ample, it is essentially impossible for a family to exist where the wife’s age is 15, her

education is university-level and the family has eight children. Other zeros may be

sampling zeroswhere the sample did not observe a particular combination of variables,

but it does exist in the population.

All of the population synthesis strategies reviewed in Chapter 2 preserved the

sparsity pattern of the high-dimensional PUMS. It would be useful if the synthesis

procedure could account for the uncertainty surrounding the sparsity pattern. One

strategy for resolving this would be to simplify the PUMS, building a variant that fits

the low-dimensional margins but makes no assumptions about the associations or

sparsity pattern in high dimensions where sampling is inadequate. The primary goal
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Figure 4.1: Simplifying the PUMS by removing high-dimensional associations. A

five-dimensional PUMS is simplified by removing four- and five-way associations.

This is achieved by fitting a uniform probability table to the complete set of 3-way

margins of the PUMS. The resulting table has the same 1-, 2- and 3-way margins as

the original PUMS, but has no 4- or 5-way association.

would be to correct sampling zeros in the high-dimensional PUMS, replacing them

with small positive counts.

This strategy is illustrated in Figure 4.1. IPF is applied on a high-dimensional table,

with the source sample set to a uniform distribution. The constraints applied to IPF are

the full set of (say) 3-way cross-tabulations of the PUMS. For a 5-dimensional problem,

this is equal to
(

5
3

)

= 10 separate constraints. After IPF, the simplified PUMS matches

all of the 3-way margins from the PUMS, but includes no 4-way or 5-way interaction

between variables. In this example, a 5-way table is shown for illustration, but the

intention is for higher-dimensional tables to be simplified. Also, 3-way margins of the

PUMS are used as constraints for illustrative purposes, but the actual margins chosen

could be selected using tests of statistically significant interaction; If a log-linear model

shows some significant 4-way interactions in the PUMS, then these could be included

as margins.
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This method does indeed reduce the number of zeros in the high-dimensional ta-

ble, correcting for sampling zeros and capturing some unusual individuals that were

not included in the original PUMS. However, this strategy has significant downsides.

In particular, it makes no distinction between structural and sampling zeros at high

dimensions: there may be structural zeros involving four or more variables that do

not appear in 3-way tables, but they will be treated the same as sampling zeros and be

filled in with small positive counts.

Furthermore, it makes the entire population synthesis procedure more difficult,

since agents can be synthesized who did not exist in the original PUMS. This makes

the technique difficult to combine with some of the other methodological improve-

ments discussed here.

4.2 Sparse List-Based Data Structure

For a microsimulation model spanning many aspects of society and the economy it is

useful to be able to associate a range of attributes with each agent. Different attributes

are useful for different aspects of the agent’s behaviour. For a person agent, labour

force activity, occupation, industry and income attributes are useful for understanding

his/her participation in the labour force. Meanwhile, age, marital status, gender and

education attributes might be useful for predicting demographic behaviour.

However, as more attributes are associatedwith an agent, the number of cells in the

corresponding multiway contingency table grows exponentially. A multiway contin-

gency table representing the association pattern between attributes has I ×J ×K× . . .

cells. If a new attribute with L categories is added, then L times more cells are needed.

Asymptotically, the storage space is exponential in the number of attributes. As a re-

sult, fitting more than eight attributes with a multizone IPF procedure typically re-

quires more memory than available on a desktop computer. However, the table itself
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is cross-classifying a fixed number of observations (i.e., a PUMS), and is extremely

sparse when a large number of attributes are included as shown in Table 4.1. Is there a

way that this sparsity can be exploited to allow the synthesis to create a large number

of attributes?

Sparsity is a familiar problem in numerical methods. Many branches of science

store large sparse 2D matrices using special data structures that hold only the non-

zero sections of the matrix, instead of using a complete array that includes cells for

every zero. In the data warehousing field, for example, multiway tables were initially

stored in complete arrays accessed through a procedure called MOLAP (Multidimen-

sional On-line Analytical Processing). More recently, that field has shifted to ROLAP

(Relational OLAP) methods that allow data to be stored in its natural microdata form

while retaining the ability to answer queries efficiently [8].

The IPF method itself has little impact on the sparsity pattern of a table. After the

first iteration of fits to the constraints, the final sparsity pattern is essentially known;

some cells may eventually converge to near-zero values, but few other changes occur.

Once a cell is set to zero, it remains zero for the remainder of the procedure. Also, the

IPF algorithm does not require a complete representation of the underlying table. All

that it needs are three operations (described later), which could be implemented using

either a complete or sparse representation of the data.

The benefits of using a sparse data structure are substantial. Williamson et al.

presented many of the arguments when describing their Combinatorial Optimiza-

tion method: efficiency in space, flexibility of aggregation and easier linking of data

sources [57]. In terms of efficiency, the method described here allows the IPF algo-

rithm to be implemented using storage proportional to the number of non-zero cells

in the initial table. For agent synthesis with the zone-by-zone method, this is propor-

tional to n (the number of observations in the PUMS) multiplied by d (the number

of attributes to fit). The multizone method combines several IPF stages, and requires
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# PUMS

Attributes Complete Storage Sparse List

d Zone-by-Zone Multizone Zone-by-Zone Multizone

1 0.00 MB 0.0 MB 0.05 MB 26.5 MB

2 0.00 MB 0.0 MB 0.05 MB 26.5 MB

3 0.00 MB 0.2 MB 0.06 MB 26.5 MB

4 0.00 MB 1.6 MB 0.07 MB 26.5 MB

5 0.02 MB 14.2 MB 0.08 MB 26.5 MB

6 0.10 MB 71.1 MB 0.09 MB 26.5 MB

7 0.87 MB 639.5 MB 0.10 MB 26.6 MB

8 4.37 MB 3,197.4 MB 0.11 MB 26.6 MB

9 13.12 MB 9,592.2 MB 0.12 MB 26.6 MB

10 52.49 MB 38,368.7 MB 0.13 MB 26.6 MB

11 157.46 MB 115,106.2 MB 0.14 MB 26.6 MB

12 472.39 MB 345,318.6 MB 0.14 MB 26.6 MB

13 1,417.18 MB 1,035,955.7 MB 0.15 MB 26.6 MB

Table 4.2: Comparison of memory requirements for implementations of an agent syn-

thesis procedure using a complete array or a sparse list. The Zone-by-Zone columns

show the memory requirements when synthesizing d attributes, all present in the

PUMS; the Multizone columns show the storage requirements for d PUMS attributes

plus one non-PUMS attribute, a zone number within the PUMA. Data: PUMS of

n = 9061 census families in the 1986 Toronto CMA, cross-classified using variables

CFSTRUC (3 categories), TENURE (2), ROOM (10), NUCHILD (9), AGEF (9), LFACTF (5),

AGEM (9), LFACTM (5), CHILDA (3), CHILDB (4), CHILDC (3), CHILDD (3) and CHILDE

(3). The geography variable CTCODE is divided into K = 731 zones.
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considerably more memory: a similar O(nd) in the first stage, but O(n(d + K)) in the

second stage, where K is the number of zones. This is illustrated in Table 4.2.

There are many types of data structures that could be used to represent a sparse

high dimensional contingency table. The data structure proposed here is not the most

efficient, but is conceptually simple. It borrows directly from Williamson’s Combina-

torial Optimization method: the data is represented as a list of the PUMS microdata

entries, with a weight attached to each. The weight is an expansion factor, repre-

senting the number of times to replicate that record to form a complete population.

Williamson’s representation includes only integer weights, and operates on a zone-

by-zone basis. The new approach described here behaves exactly like IPF and hence

allows fractional weights. With a small extension, it can also supports multiple zones:

instead of attaching one weight to each PUMS entry, K weights are attached with one

for each zone. An illustration of the format of the data structure is shown in Table 4.3.

As Williamson et al. pointed out, flexible aggregation is a real advantage of a list-

based representation. Complete array storage is proportional to the number of cate-

gories used for each attributes, while the sparse storage scheme is not affected by the

categorization of the attributes. Many applications of IPF that used complete arrays

were forced to abandon detailed categorization schemes to conserve space and allow

more attributes to be synthesized (e.g., [2]). This in turn makes it difficult to apply

several margins, since different margins may categorize a single attribute differently.

When a large number of categories are possible, however, the attribute can be repre-

sented with a fine categorization and collapsed to different coarse categorizations as

required during the fitting procedure.

4.2.1 Algorithmic Details

The operation of a typical IPF algorithm was presented earlier in Figure 2.4. To im-

plement this procedure with the sparse list structure, the following operations are
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(a)

Co-ordinates

Index CFSTRUC ROOM TENURE NUCHILD . . . CHILDE Weight

1 Husband-wife 7 Owned 3 . . . 1 81.8

2 Lone female parent 4 Rented 0 . . . 0 70.9

3 Husband-wife 9 Rented 0 . . . 0 54.8

4 Husband-wife 9 Owned 0 . . . 0 86.2

. . . . . . . . . . . . . . . . . . . . . . . .

9060 Husband-wife 9 Rented 0 . . . 0 64.8

9061 Husband-wife 6 Rented 0 . . . 0 100.3

(b)

Co-ordinates Weight

Index CFSTRUC ROOM TENURE NUCHILD . . . CHILDE CTCODE1 CTCODE2 . . . CTCODE731

1 Husband-wife 7 Owned 3 . . . 1 0.000 0.121 . . . 0.021

2 Lone female parent 4 Rented 0 . . . 0 0.000 0.212 . . . 0.020

3 Husband-wife 9 Rented 0 . . . 0 0.000 0.244 . . . 0.143

4 Husband-wife 9 Owned 0 . . . 0 0.002 0.037 . . . 0.019

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9060 Husband-wife 9 Rented 0 . . . 0 0.000 0.349 . . . 0.011

9061 Husband-wife 6 Rented 0 . . . 0 0.004 0.213 . . . 0.074

Table 4.3: Format of a sparse list-based data structure for Iterative Proportional Fitting As shown, each row corresponds

to a PUMS entry. The columns give the co-ordinates of each PUMS entry within the high-dimensional array. Each row

also stores (a) a single weight when synthesizing only PUMS attributes (e.g., a zone-by-zone IPF); or (b) a set of weights,

corresponding to the categories of a non-PUMS attribute (e.g., a multizone IPF where the non-PUMS attribute defines a

zone (census tract) code within the PUMA).
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necessary:

• Set the initial weights (line 2).

• Collapse to the dimensions of a target margin (e.g., N̂
(τ)
i+ in line 5).

• Update a weight according to its location within a target margin (e.g., N̂
(τ+1)
ij in

line 5).

If the target population margins remain stored as a complete array, these opera-

tions are relatively straightforward. The collapse operation can be done in a single

pass over the list, using the category numbers in each list row as co-ordinates into the

complete array that stores the collapsed table. The update operation can likewise be

done in a single pass over the list. All of these operations are fast, with complexity

equal to the storage cost, O(nd). (The method is basically the same when non-PUMS

attributes are included and multiple weights are stored per row in the list. The non-

PUMS attribute must be handled as a special case, since it is stored slightly differently.

Since there are K times more weights, the computation cost grows proportionally to

O(n(d + K)), again matching the storage cost.)

The only tricky part of the procedure is setting the initial weights. When using

a complete array representation for zone-by-zone methods, the initial table needs to

follow the distribution of the PUMS, while for Beckman et al.’s multizone method, the

initial table needs to be a uniform distribution, usually by setting all cells to one. In

the sparse representation described here, the situation is reversed because there is one

row per PUMS entry, instead of one cell grouping many PUMS entries. As a result, the

initial weights need to be 1.0 for the zone-by-zone method. For the multizone method,

the sum of the weights in the r rows that contribute to a single “cell” in the complete

table needs to add to one. Therefore, the individual weights should be 1/r. The tricky

part is finding how many rows share a cell, since the data is not structured for this

purpose. To achieve this, the list is sorted by the table dimensions, which has the
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effect of grouping rows contributing to a single cell. In this manner, the initial weights

can be set in O(n log n) time.

Additionally, the multizone procedure requires a fit to the distribution of all non-

geographic variables simultaneously. (See the N̂ij+ margin on the right half of Fig-

ure 2.6.) This margin is high-dimensional—it includes all variables except for the ge-

ographic variable. However, it is also sparse, and is in fact computed through an IPF

procedure. As a result, it is already stored as a sparse list with a single weight per row.

This weight can be treated as a constraint on the total for the weights in each row, and

suitable collapse/update procedures are then easily defined. The computation cost is

still O(n(d + K)) for this type of constraint.

Finally, theMonte Carlo integerization for this sparse structure is quite simple, and

little changed. The list of weights (or 2D array of weights for the multizone procedure)

is normalized and treated as a probability mass function, and individual rows (cells

for multizone) are synthesized using Monte Carlo draws.

4.2.2 Discussion

This sparse data structure removes a substantial limitation from the IPF algorithm,

but also raises new questions. Is there a limit to the number of attributes that can be

synthesized? If there is a limit, how is it related to the size n of the PUMS sample?

The answers to these questions remain elusive. Ultimately, the addition of a new

attribute is a decision to increase the dimension of the multiway contingency table. As

discussed earlier, the behaviour of this high-dimensional table and its relationship to

lower-dimensional margins remains poorly understood.
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4.3 Fitting to Randomly Rounded Margins

Many census agencies apply random rounding procedures to published tables, in-

cluding the agencies in Canada, the United Kingdom and New Zealand. Each agency

has a base b that it uses, and then modifies a cell count Ni+ by rounded up to the near-

est multiple of b with a probability p, or downwith a probability 1−p. In most applica-

tions, a procedure called unbiased random rounding is used, where p = (Ni+ mod b)/b.

The alternative is called unrestricted random rounding, where p is constant and inde-

pendent of the cell values; for example, with p = 0.5 it is equally likely that a cell will

be rounded up or down.

For example, cells and marginal totals in Canadian census tables are randomly

rounded up or down to a multiple of b = 5 using the unbiased procedure. For a cell

with a count of Ni+ = 34, there is a 20% probability that it is published as Ñi+ = 30 and

an 80% probability that it is published as Ñi+ = 35. Most importantly, the expected

value is equal to that of the unrounded count; it is therefore an unbiased random

rounding procedure.

As discussed by Huang & Williamson [28], this can lead to conflicts between ta-

bles: two different cross-tabulations of the same variable or set of variables may be

randomly rounded to different values. The standard IPF procedure will not converge

in this situation. The procedure is also unable to take into account the fact that mar-

gins do not need to be fitted exactly, since there is a reasonable chance that the correct

count is within ±4 of the reported count.

4.3.1 Modified Termination Criterion

Using the termination criterion of Figure 2.4 (line 10), the IPF procedure will not neces-

sarily terminate if two randomly rounded margins conflict. The termination criterion
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shown requires the fitted table to match all margins simultaneously:

δ = max
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∣
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(4.1)

Instead of requiring a fit, the algorithm could terminate when the net effect of one

iteration drops below a threshold. That is,
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or even

δ = max
i,j
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∣

∣
N̂

(τ+2)
ij − N̂

(τ)
ij

∣

∣

∣
(4.3)

The intention here is to terminate the algorithm when the change in error in the mar-

gins drops below a threshold, instead of the absolute error.

4.3.2 Hierarchical Margins

For each cross-tabulation, statistical agencies publish a hierarchy ofmargins, and these

margins are rounded independently of the cells in the table. For a three-way table Nijk

randomly rounded to give Ñijk, the data release will also include randomly rounded

two-way margins Ñij+, Ñi+k and Ñ+jk, one-way margins Ñi++, Ñ+j+ and Ñ++k, and

a zero-way total Ñ+++. The sum of the cells does not necessarily match the marginal

total. For example, the sum
∑

k Ñijk includes K randomly rounded counts. The ex-

pected value of this sum is the true count Nij+, but the variance is large and the sum

could be off by as much as K(b − 1) in the worst case. By contrast, the reported

marginal total Ñij+ also has the correct expected value, but its error is at most b − 1.

For this reason, it seems sensible to include the hierarchical margins in the fitting

procedure, in addition to the detailed cross-tabulation itself.
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4.3.3 Projecting onto Feasible Range

As described in equations (2.6) and (2.1), the IPF procedure minimizes the Kullback-

Leibler divergence I(N̂‖n),

∑

i

∑

j

N̂ij log(N̂ij/nij)

while satisfying the marginal constraints

∑

j

N̂ij = Ñi+,
∑

i

N̂ij = Ñ+j

To handle random rounding, the marginal constraints could instead be treated as in-

equalities,
∣

∣

∣

∣

∣

∑

j

N̂ij − Ñi+

∣

∣

∣

∣

∣

≤ b − 1,
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∣

∣

∣

∣

∑

i

N̂ij − Ñ+j

∣

∣

∣

∣

∣

≤ b − 1 (4.4)

That is, any value within the range Ñi+ ± (b− 1) is an acceptable solution, with no

preference for any single value within that range.

Dykstra’s generalization of IPF [17] provides some fruitful ideas for handling this

type of constraint. Csiszár [13] described the IPF procedure as a series of projec-

tions onto the subspace defined by each constraint. Csiszár was not working in a

d-dimensional space (where d is the number of attributes being fitted), but in a C-

dimensional space (where C is the number of cells in the table) representing all possi-

ble probability distributions, which has since been called I-space.

Nevertheless, the idea of projection is still useful: each iteration of IPF is a modifi-

cation of the probability distribution to fit a margin. It is a “projection” in that it finds

the “closest” probability distribution in terms of Kullback-Leibler divergence, just as

the projection of a point onto a plane finds the closest point on the plane in terms

of Euclidean distance. (Note, however, that Kullback-Leibler divergence is not a true

distance metric.)

Csiszár only considered equality constraints. Dykstra extended Csiszár’s method

to include a broader range of constraints: any closed convex set in I-space. This
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∆ P (Ni+ = Ñi+ + ∆ | Ñi+)

-5 0%

-4 4%

-3 8%

-2 12%

-1 16%

0 20%

1 16%

2 12%

3 8%

4 4%

5 0%

Table 4.4: Relationship between unknown true count and the randomly rounded

count published by the statistical agency. The table shows the probability distribution

for unrounded count Ni+ given published randomly rounded count Ñi+, assuming

base b = 5.

class of constraints appears to include the desired inequality constraints defined by

Equation 4.4. Dykstra’s method for applying these constraints is also a projection

procedure, finding the set of counts that satisfy the constraint while minimizing the

Kullback-Leibler divergence.

To give an example, consider the algorithm of Figure 2.4. Line 5 would be replaced

with

N̂
(τ+1)
ij =































N̂
(τ)
ij

Ñi+−(b−1)

N̂
(τ)
i+

N̂
(τ)
i+ < Ñi+ − (b − 1)

N̂
(τ)
ij

Ñi++(b−1)

N̂
(τ)
i+

N̂
(τ)
i+ > Ñi+ + (b − 1)

N̂
(τ)
ij otherwise

(4.5)

(and likewise for line 8).

However, this projection procedure has its own problems. The standard IPF proce-

dure ignores the probability distribution associatedwith eachmarginal value and uses

only the published cell count. The projection procedure described here suffers from
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the opposite problem: it focuses on the range of possible values, without acknowledg-

ing that one outcome is known to be more likely than the others. To see this, consider

the probability distribution for the unrounded value Ni+ given the published value

Ñi+ shown in Table 4.4. The distribution is triangular, with a strong central peak. The

projection algorithm forces the fit to match the range ±(b − 1) of this distribution, but

it treats all values inside this range as equally probable. This would be suitable if the

census used unrestricted random rounding, but not for the more typical case where

unbiased rounding is used.

4.4 Synthesizing Agent Relationships

Suppose that a population of person agents has been synthesized, with a limited

amount of information about their relationships in families (such as a CFSTRUC, which

classifies a person as married, a lone parent, a child living with parent(s), or a non-

family person). In the absence of any information about how families form, the per-

sons could be formed into families in a naı̈ve manner: randomly select male married

persons and attach them to female married persons, and randomly attach children to

couples or lone parents. Immediately, problems would emerge: some persons would

be associated in implausible manners, such as marriages with age differences over 50

years, marriages between persons living at opposite ends of the city, or parents who

are younger than their children.

Awell-designed relationship synthesis procedure should carefully avoid such prob-

lems. A good choice of relationships satisfies certain constraints between agents’ at-

tributes, such as the mother being older than her child, or the married couple living in

the same zone. It also follows known probability distributions, so that marriages with

age differences over 50 years have a low but non-zero incidence.

Most constraints and probability distributions are observed in microdata samples
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of aggregate agents, such as families and households. A complete Family PUMS in-

cludes the ages of mothers and children, and none of the records includes a mother

who is younger than her children.1 Similarly, only a small fraction of the records in-

cludemarriages between couples with ages differing bymore than 50 years. The ques-

tion, however, is one of method: how can relationships between agents be formed to

ensure that the desired constraints are satisfied?

Guo & Bhat [26] used a top-down approach, synthesizing a household first and

then synthesizing individuals to connect to the household. The attributes used to

link the two universes were gender and age: the gender of the husband/wife or lone

parent are known, and coarse constraints on the age of the household head (15–64 or

65+) and children (some 0–18 or all 18+). These constraints are quite loose, and no

constraint is enforced between the husband/wife’s ages or parent/child ages.

Guan [25] used a bottom-up approach to build families, with slightly stronger

constraints. The persons were synthesized first, and then assembled to form fami-

lies. Children are grouped together (and constrained to have similar ages), then at-

tached to parents. Constraints between parent/child ages and husband/wife ages

were included, although there are some drawbacks to the method used for enforce-

ment. Guan likewise used a bottom-up approach to combine families and non-family

persons into households.

Arentze & Timmermans [2] only synthesized a single type of agent, the household.

Their synthesis included the age and labour force activity of both husband and wife,

and the linkage to the number of children in the household. They did not connect this

to a separate synthesis of persons with detailed individual attributes, but by synthe-

sizing at an aggregate level, they guaranteed that the population was consistent and

1Of course, according to the census definition of family, a “mother” could in fact be a stepmother,
and there is a small but non-zero probability that she could be younger than her “children.” This is not
evident anywhere in the Canada-wide PUMS, but there are two other baffling families: one with a 27
year old father, a 24 year old mother, and a child of 25 years or older; the other has a 17 year-old single
mother and a child of 18 years or older.
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satisfied key constraints between family members.

Both Guo & Bhat and Guan’s procedures suffer from inconsistencies between the

aggregate and disaggregate populations. The family populationmay contain 50 husband-

wife families in zone k where the husband has age i, while the person population

contains only 46 married males of age i in zone k. In the face of such inconsistencies,

either families or persons must be changed: a family could be attached to a male of

age i′ 6= i, or a person could be modified to fit the family. In both cases, either the fam-

ily or person population is deemed “incorrect” and modified. The editing procedures

are difficult to perform, and inherently ad hoc. Furthermore, as the number of over-

lapping attributes between the two populations grows, inconsistencies become quite

prevalent.

What are the sources of these inconsistencies? They come from two places: first,

the fitting procedure used to estimate the population distribution N̂P for persons and

N̂F for families may not give the same totals for a given set of common attributes.

Second, even if N̂P and N̂F agree on all shared attributes, the populations produced

by Monte Carlo synthesis may not agree, since the Monte Carlo procedure is non-

deterministic. In the following sections, a method is proposed to resolve these two

issues.

4.4.1 Fitting Populations Together

For the purposes of discussion, consider a simple synthesis example: synthesizing

husband-wife families. Suppose that the universe of persons includes all persons,

with attributes for gender SEXP(g), family status CFSTRUC(h), age AGEP(i), education

HLOSP(j) and zone CTCODE(k). The universe of families includes only husband-wife

couples, with attributes for the age of husband AGEM(im) and wife AGEF(if ), and

zone CTCODE(k). IPF has already been used to estimate the contingency table cross-

classifying persons (N̂P
ghijk) and likewise for the table of families (N̂F

imif k). The shared
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attributes between the two populations are age and zone, and implicitly gender. The

two universes do not overlap directly, since only a fraction of the persons belong to

husband-wife families; the others may be lone parents, children, or non-family per-

sons, and are categorized as such using the CFSTRUC attribute.

In order for consistency between N̂P and N̂F , the following must be met for h =

husband-wife and any choice of i, k:

N̂P
ghi+k =















N̂F
i+k for g=male

N̂F
+ik for g=female

(4.6)

That is, the number of married males of age i in zone k must be the same as the

number of husband-wife families with husband of age i in zone k. While this might

appear simple, it is often not possible with the available data. A margin NP
g+i+k giving

the SEXP × AGEP × CTCODE distribution is probably available to apply to the person

population. However, a similar margin for just married males is not likely to exist for

the family population; instead, the age breakdown for married males in the family

usually comes from the PUMS alone. As a result, equation (4.6) is not satisfied.

One suggestion immediately leaps to mind: if the person population is fitted with

IPF first and N̂P is known, the slice of N̂P
ghi+k where g = male and h = husband-wife

could be applied as a margin to the family fitting procedure, and likewise for g =

female. This is entirely feasible, and does indeed guarantee matching totals between

the populations. The approach can be used for the full set of attributes shared between

the individual and family populations. There is one downside, however: it can only

be performed in one direction. The family table can be fitted to the person table or

vice versa, but they cannot be fitted simultaneously.2

Finally, there remains one wrinkle: it is possible that the family population will

2It is conceivable that an IPF procedure could be devised where the two populations are fitted in
parallel and could be constrained against each other; however, the convergence and discrimination
information-minimizing properties of such a process are unknown.
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still not be able to fit the total margin from the individual population, due to a differ-

ent sparsity pattern. For example, if the family PUMS includes no families where the

male is (say) 15–19 years old but the individual PUMS does include a married male of

that age, then the fit cannot be achieved. This is rarely an issue when a small number

of attributes are shared, but when a large number of attributes are shared between the

two populations it is readily observed. The simplest solution is to minimize the num-

ber of shared attributes, or to use a coarse categorization for the purposes of linking

the two sets of attributes.

Alternatively, the two PUMS could be cross-classified using the shared attributes

and forced to agree. For example, for g = male and h = husband-wife, then the pattern

of zeros in nP
ghi++ and nF

i++ could be forced to agree by setting cells to zero in one or

both tables. (In the earlier example, this would remove the married male of age 15–

19 from the Person PUMS.) The person population is then fitted using this modified

PUMS, and the family population is then fitted to themargin of the person population.

4.4.2 Conditioned Monte Carlo

The second problem with IPF-based synthesis stems from the independent Monte

Carlo draws used to synthesize persons and families. For example, suppose that mu-

tually fitted tables N̂P and N̂F are used with Monte Carlo to produce a complete pop-

ulation of persons and families N̂′
P

∈ Z and N̂′
F

∈ Z. If it can be guaranteed for

g = male and h = husband-wife that

N̂′
P

ghi+k = N̂′
F

i+k (4.7)

(and likewise for g = female), then a perfectly consistent set of connections between

persons and families is possible. How can equation (4.7) be satisfied?

A simplistic solution would be a stratified sampling scheme: for each combination

of i and k, select a number of individuals to synthesize and make exactly that many
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draws from the subtables N̂P
++i+k and N̂F

i+k. This approach breaks down when the

number of strata grows large, as it inevitably does when more than one attribute is

shared between persons and families.

The problem becomes clearer once the reason for mismatches is recognized. Sup-

pose a Monte Carlo draw selects a family with husband age i in zone k. This random

draw is not synchronized with the draws from the person population, requiring a per-

son of age i in zone k to be drawn; the two draws are independent. Instead, synchro-

nization could be achieved by conditioning the person population draws on the family

population draws. Instead of selecting a random value from the joint distribution

P (SEXP,CFSTRUC,AGEP,HLOSP,CTCODE)

of the person population, a draw from the conditional distribution

P (HLOSP | SEXP = male,CFSTRUC = husband-wife,AGEP = i,CTCODE = k)

could be used, and a similar draw for the wife. Converting the joint distribution gen-

erated by IPF to a conditional distribution is an extremely easy operation.

This reversal of the problem guarantees that equation (4.7) is satisfied, and allows

consistent relationships to be built between agents. While it has been described here

in a top-down manner (from family to person), it can be applied in either direction.

The two approaches are contrasted in Figures 4.2 and 4.3.

4.4.3 Summary

As demonstrated in the preceding sections, it is possible to synthesize persons and

relate them together to form families, while still guaranteeing that the resulting pop-

ulations of persons and families approximately satisfy the fitted tables N̂P and N̂F .

By carefully choosing a set of shared attributes between the person and family agents

and using conditional synthesis, a limited number of constraints can be applied to
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for 1 . . . NF do1

Synthesize a husband-wife family using a Monte Carlo draw ;2

Synthesize a person, conditioning on AGEM, CFSTRUC, CTCODE and3

SEXP = male;

Synthesize a person, conditioning on AGEF, CFSTRUC, CTCODE and4

SEXP = female;

end5

for 1 . . . (NP − 2NF ) do6

Synthesize a person, conditioning on CFSTRUC 6= husband-wife;7

end8

Figure 4.2: A top-down algorithm for synthesizing persons and husband-wife

families.

for 1 . . . NP do1

Synthesize a person using a Monte Carlo draw ;2

if CFSTRUC = husband-wife then3

if SEXP = male then4

Synthesize a husband-wife family, conditioning on AGEM and5

CTCODE;

Synthesize a person, conditioning on AGEF, CFSTRUC, CTCODE and6

SEXP = female;

else7

Synthesize a husband-wife family, conditioning on AGEF and8

CTCODE;

Synthesize a person, conditioning on AGEM, CFSTRUC, CTCODE and9

SEXP = male;
end10

end11

end12

Figure 4.3: A bottom-up algorithm for synthesizing persons and husband-wife

families.
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the relationship formation process. In the example discussed earlier, the ages of hus-

band/wife were constrained; in a more realistic example, the labour force activity of

husband/wife, the number of children and the ages of children might also be con-

strained. Furthermore, multiple levels of agent aggregation could be defined: families

and persons could be further grouped into households and attached to dwelling units.

The synthesis order for the different levels of aggregation can be varied as required,

using either a top-down or bottom-up approach. However, the method is still limited

in the types of relationships it can synthesize: it can only represent nesting relation-

ships. Each individual person can only belong to one family, which belongs to one

household. Other types of relationships cannot be synthesized using this method,

such as a person’s membership in another group (e.g., a job with an employer).



Chapter 5

Implementation

For the purposes of the ILUTE land use/transportation model, most of the improve-

ments described in Chapter 4 seemed promising for the synthesis of a population of

persons, families, households and dwelling units. A sparse data structure was used,

a hierarchy of margins were used to help with random rounding, and conditional

synthesis was used to link the different types of agents. The PUMS simplification

procedure would increase the memory requirements of the sparse data structure, and

was not employed. The projection method for dealing with random rounding was not

deemed a significant improvement over the conventional IPF procedure, and was also

not used.

A complete overview of the population synthesis procedure is shown in Figure 5.1.

The numbered steps shown in the figure are:

1. a. Fit households/dwellings using PUMS and Summary Tables (using Beck-

man’s multizone IPF approach).

b. Fit persons using PUMS and Summary Tables.

2. Fit families using PUMS and Summary Tables; also fit to distributions of at-

tributes shared with households/dwellings and persons.
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Figure 5.1: Overview of complete synthesis procedure. Numbers show the order of steps. On the left, PUMS and Summary

Table data are combined using a fitting procedure (Beckman et al.’s multizone IPF). On the right, Monte Carlo is used to

synthesize a list of individual agents from the fitted tables.
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3. Use Monte Carlo to synthesize a list of households/dwellings.

4. For each household/dwellingwith one ormore families, synthesize family/families

conditioned on household/dwelling characteristics.

5. a. For each family, synthesize persons conditioned on family characteristics.

b. For each household/dwelling, synthesize non-family persons conditioned

on household/dwelling characteristics.

c. Use Monte Carlo to synthesize a list of foreign/temporary/collective (non-

institutional) residents (not associated with a household/dwelling).

Themethodwas implemented using special-purpose softwarewritten for the R/S+

statistical computing platform [29] with a few routines in C for additional speed. The

following sections discuss the population universe, relationship model, population

attributes, selection of shared attributes and software implementation.

5.1 Population Universe

The person, family and household universes are slightly reduced to match available

data. No data is available on unoccupied dwellings, so only occupied dwellings

are synthesized. This simplifies the dwelling/household relationship to a one-to-one

mapping, allowing dwellings and households to be synthesized simultaneously. Al-

most no data is available on persons in institutions, so they are excluded from syn-

thesis. Temporary, foreign and collective residents are included in most tables and are

included in the synthesis for the purposes of accounting, but are not associated with

any household, family or dwelling. For the fitting procedure, only persons 15 years

of age and older are included, since most tables exclude younger persons. The con-

ditional synthesis procedure does create persons under 15 years of age, but their only

attributes are age and sex, since nothing further is available.
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Finally, it is difficult to combine data from the 20% and 100% samples of the person

universe. Most tables are on the 20% sample and exclude institutional residents, but

the few that are defined on the 100% sample include the institutional residents. There

is very little data on the institutional population, and they cannot always be removed

from the 100% sample to match the 20% universe. Since more data is available on the

20% sample, it was used for synthesis, and the only 100% table used was CF86A04

(CFSTAT×AGEP× SEXP×CTCODE); DM86A01 was not used. The CF86A04 table was

fitted to the 20% totals for AGEP × SEXP × CTCODE

For the family and household/dwelling synthesis, the 20% and 100% samples are

defined on the same universe and are easier to combine. The 100% samples were used

for both of these universes, which required a few 20% household table to be fitted to

the 100% universe.

5.2 Relationship Model

The relationships synthesized between the different agents/objects are shown in Fig-

ure 5.2. Each household consists of zero or more census families, and zero or more

non-family persons. There are approximately 28,000 multifamily households in the

Toronto CMA, accounting for 2.3% of all households and 4.7% of the population.

Multifamily households are not particularly desirable from a modelling standpoint;

they were not contemplated as part of the original ILUTE prototype, and their be-

haviour would be challenging tomodel. Nevertheless, to properly account for persons

and families during the synthesis of the dwellings, families and persons, multifamily

households must be included. There is no data on exactly how many households

contain more than two families, but it can be estimated as approximately 1,000 of the
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Figure 5.2: Diagram of the relationships synthesized between agents and objects, us-

ing the Unified Modelling Language (UML) notation [6]. Each line indicates a rela-

tionship, and the numbers at each end of the line show the “multiplicity”, the number

of agents/objects involved in the relationship. Edges with a diamond represent an

aggregation relationship, where the diamond end is a “whole” and the other end is

a “part.” Thus, each household is composed of zero to two families, and conversely

each family is a part of exactly one household.

28,000 multifamily households1. For the purposes of synthesis, these are treated as

two-family households.

Some of the non-family persons in a household may still form an economic fam-

ily, and be related to other household members; as described in Chapter 3, 3.9% of

the Toronto CMA population are non-family persons living with relatives. However,

there is very little data on these persons and on economic families in general, although

a patchwork of information can be gleaned from the Person PUMS and the Household

PUMS. Furthermore, the economic family is not a particularly useful unit to synthe-

size from a behavioural perspective. While census families make many decisions as

a unit (e.g., moving home or buying/selling vehicles), economic families are less uni-

fied in their behaviour. Elderly parents or married children living with relatives may

1From the HH86A01 table, there are 849,950 one-family households and 27,720 multifamily house-
holds. Assuming 1,000 of these are three-family households, this gives 906,390 census families in total,
quite close to the 906,385 total family count found in various family tables.
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choose to change homes or vehicle ownership independent of the other members of

their economic family. In light of its limited usefulness and importance for the rest

of synthesis, economic families were excluded from synthesis. Persons living with

relatives are treated the same as other non-family persons.

Finally, each census family contains two or more persons (at a minimum, either a

husband and wife or a lone parent and child). These relationships between agents can

also be examined in the reverse direction. Each person is a member of zero or one cen-

sus family, and is a member of zero or one household; each family belongs to a single

household. (Persons in collective dwellings and institutions are the only persons who

do not belong to a household.) Each household occupies a single dwelling unit.

The relationships (and universes) used for synthesis may not be ideal for the ac-

tual microsimulation model. The existing ILUTE and TASHA models do not define

families as an explicit agent, but instead include family relationships as part of the

household agent; they also did not allow for multifamily households. It is admittedly

difficult to build behavioural models at the family level; the definitions of family re-

lationships are sufficiently complex that few data sources are collected on the family

universe. Even if more data was available, it is unlikely that the family definitions

would be sufficiently consistent to be useful. Similarly, multifamily households are

rare enough (and complex enough) that activity diary data is not always adequate to

model their behaviour.

The synthesis here only accounts for some of the agents needed for the ILUTE mi-

crosimulation. Some of the other agents, objects and relationships can easily leverage

this initial synthesis: household-level vehicle ownership, for example, can be read-

ily modelled once the household composition is known. The combined synthesis of

household vehicle ownership and location of work for multiple-worker households

remains an important challenge, however, given the limitations of available data.
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Dwelling + Census

Household Family Person

BUILTH (7) AGEF (9) AGEP (8)

DTYPEH (6) AGEM (9) CFSTAT (7)

HHNUEF (2) CFSIZE (7) HLOSP (9)

HHNUMCF (3) CFSTRUC (3) LFACT (4)

HHSIZE (8) CHILDA (3) OCC81P (16)

PAYH (5) CHILDB (4) SEXP (2)

PPERROOM (5) CHILDC (3) TOTINCP (13)

ROOM (9) CHILDDE (9) CTCODE (731)

TENURH (2) HHNUMCF (2)

CTCODE (731) LFACTF (5)

LFACTM (5)

NUCHILD (9)

ROOM (9)

TENURE (2)

CTCODE (731)

Table 5.1: Attributes and number of categories used during IPF fitting of three agent

types. See Chapter 3 for comparison to categorization in source data, and see Ap-

pendix A for descriptions and further details.

5.3 Attributes

The attributes attached to each agent were largely selected based on the needs of the

ILUTE model, plus a few additional attributes to help with linking agents to form

relationships. As discussed in Chapter 3 these attributes are taken from both PUMS

and Summary Table data. All summary tables discussed in Tables 3.3–3.5 were in-

cluded in the synthesis except for the DM86A01 table (due to its inclusion of the in-

stitutional population) and the LF86B08 table. All margins of these summary tables

were included to help with random rounding. For example, in the SC86B01 table, the

four-way table AGEP ×HLOSP × SEXP × CTCODE was applied as a margin, and all of

its three-way, two-way and one-way margins were also applied as margins.
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The categorization schemes in these data sources are often different, and some

effort must be taken to establish suitable categorizations. A relatively fine categoriza-

tion scheme was chosen for the source table during the IPF procedure, although not

quite as fine as the PUMS categorization. The marginal tables generally had a coarser

categorization for their attributes. To connect the two, mappings were constructed

defining how the fine categories in the high-dimensional table could be collapsed to

produce the coarser categorization in the marginal tables.

The final set of attributes synthesized during the IPF stage are shown in Table 5.1,

along with the number of categories used in synthesis. Further details are shown in

Appendix A.

5.4 Shared Attribute Selection

For any group of agents linked through a relationship, the agents’ attributes need to

satisfy certain constraints, precluding impossible agent relationships such as a mother

who is younger than her child. The method described in Chapter 4 was used to ensure

that a selected set of agent attributes are consistent and follow an observed probability

distribution. In brief, the stages of the method are:

1. Select a set of attributes that are shared between two types of agents. Typi-

cally, attributes are selected to allow enforcement of behaviourally important

constraints between agents.

2. Ensure that agents agree on the distribution of the shared attributes, possibly

by fitting one population’s contingency table against a margin of the other. As

shown in Figure 5.1, the household/dwelling and person populations were fit

first in this implementation. Margins for certain shared attributes were then

taken from these tables, and applied as constraints when fitting the family pop-

ulation.



CHAPTER 5. IMPLEMENTATION 82

# Agent Attribute Agent Attribute Notes

1 Household CTCODE Family CTCODE For family households where

+ Dwelling HHNUMCF HHNUMCF HHNUMCF > 0. Linkage between

HHSIZE CFSIZE sizes is indirect.

ROOM ROOM

TENURH TENURE

2 Family CTCODE Person CTCODE For husband-wife or lone female

CFSTRUC CFSTAT parent families.

AGEF AGEP

LFACTF LFACT

SEXP

3 Family CTCODE Person CTCODE For husband-wife or lone male

CFSTRUC CFSTAT parent families.

AGEM AGEP

LFACTM LFACT

SEXP

4 Family CTCODE Person CTCODE For children 15–17 in families

CFSTRUC CFSTAT where CHILDC > 0.

AGEP

5 Family CTCODE Person CTCODE For children 18+ in families

CFSTRUC CFSTAT where CHILDDE > 0.

AGEP

6 Household CTCODE Person CTCODE For non-family persons, where

+ Dwelling CFSTAT HHSIZE −
∑

CFSIZE > 0.

Table 5.2: Summary of all attributes that are shared between agents to define and con-

strain relationships. The left agent and attributes are used to conditionally synthesize

the right agent and attributes. For this to work, the distributions of these attributes

must match in the fitted tables for both agents. Published tables are available for both

agents for #4–6, but not for #1–3. Not shown: there are similar shared attributes for

children under age 15 using CHILDA and CHILDB, but these persons are not part of

the core person population.
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3. Synthesize related agents by conditioning on shared attributes. As shown in

Figure 5.1, this was done in a top-down manner in this implementation, start-

ingwith households/dwellings, conditionally synthesizing families from house-

hold/dwelling attributes, and then conditionally synthesizing family persons

from family attributes.

This section focuses on the first step; the last two steps are described in detail in

Chapter 4. The full set of shared attributes are shown in Table 5.2, and explained in

the remainder of this section.

5.4.1 Households and Dwellings

The household/dwelling linkage was easy and automatic, thanks to the one-to-one

relationship between occupied dwellings and households and the existence of a sin-

gle PUMS combining both sets of attributes. Consistency between related house-

hold attributes (e.g., HHSIZE), dwelling attributes (ROOM) and combined attributes

(PPERROOM) was automatic, since all data in the Household PUMS is consistent.

5.4.2 Families and Persons

The family/person linkage was fairly straightforward to select and construct. There

are clear constraints between the family members that need to be preserved: for exam-

ple, the age of the parents relative to the children and similarity in the parents’ ages.

To enforce such an age constraint, an age attribute must be present on both family and

person agents, and the agents must agree on the distribution of ages. On the family

agent, the attribute can be explicit like AGEF and AGEM (the husband/wife ages) or

implicit like CHILDA (the number of children in the family of age 0–5).

The second obvious candidate for a constraint within the family is the labour force

activity attribute. The presence of young children has a strong effect on the parents’
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labour force activity, and the two parents’ activity is correlated. As a result, AGEP,

LFACT, SEXP and CFSTAT are the obvious candidates for linkage attributes, and are in-

cluded (directly or indirectly) on both the family and person agents. This matches the

set of constraints applied by Arentze & Timmermans [2] in their synthesis of house-

holds.

Other person attributes such as highest level of schooling (HLOSP) or occupation

(OCC81P) are also likely to exhibit correlation between husband and wife, but are not

deemed critical for the ILUTE model. For a transportation model, the travel to work

associated with labour force activity is more critical. Because HLOSP and OCC81P are

not treated as shared attributes, the association pattern between the husband and wife

may not be accurate for these attributes.

5.4.3 Households/Dwellings and Families

The household/family linkage was the most challenging in this dataset. There were

three primary options for performing the linkage, which could be used independently

or combined:

1. Household maintainer demographics. The Household PUMS includes demo-

graphic information about a person self-designated as the maintainer, and the

demographics of his/her spouse.

2. Dwelling characteristics such as the number of rooms and tenure. Data on

rooms is present in both the Household and Family PUMS, and is in fact the

only data in the Family PUMS related to household size.

3. Financial attributes such as the monthly rent/mortgage payments and the fam-

ily income.

Initially, the household maintainer looked like an appealing link, since it would

allow a single set of attributes to be shared between the three types of agents; perhaps
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the maintainer’s age and labour force activity could be carried throughout. However,

the definition of the maintainer is too open-ended to be consistently useful. In 4.9% of

households including census families, a child or non-family person is the maintainer;

little or no demographic information about these persons is present in the Family

PUMS, making linkage difficult. Additionally, in multifamily households the main-

tainer demographics only give information about one of the families.

Dwelling/household characteristics are more usable for linkage. Given the im-

portance of the housing market to the ILUTE model, it is vital to ensure that fami-

lies occupy legitimate dwellings, particularly homes that are large enough. The HH-

SIZE attribute combined with the ROOM attribute in the Household PUMS can en-

sure that the dwelling has enough rooms to accommodate the persons in the house-

hold. The Family PUMS includes a CFSIZE attribute; if it can be guaranteed that

CFSIZE ≤ HHSIZE, then the family can fit in the dwelling. However, families can

share rooms in a dwelling in a different manner from unrelated persons. The ROOM

attribute is one of the few household/dwelling attributes present in the Family PUMS,

and is the only data available showing how families use dwelling space differently

from non-family households. Finally, the tenure TENURH also provides an important

link with parents’ ages. These two attributes were ultimately chosen to define the

dwelling/family link, with an additional special constraint between ROOM, family

size CFSIZE, HHSIZE and the number of families HHNUMCF.2

Financial attributes are also a possible link and a useful constraint, but were not

pursued in this work. From a modelling standpoint, it would be valuable to be

able to ensure that the members of a household have an income sufficient to pay

the rent/mortgage for the dwelling they occupy. However, due to the large num-

2The details are a little complicated. After synthesizing a dwelling, a special conditional probabil-
ity table is used to add a CFSIZE attribute using a Monte Carlo draw. The conditional probability is
P (CFSIZE |ROOM,HHSIZE,HHNUMCF), and is calculated by reweighting the Person PUMS for family
persons to the family universe. Finally, the dwelling with this additional attribute is used to synthesize
the family, conditioning on the shared attributes ROOM, CFSIZE, TENURH, HHNUMCF and CTCODE.
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ber of persons (both family and non-family) potentially involved in this relationship,

it would likely be tricky to implement.

5.4.4 Households and Non-Family Persons

The final linkage is between household and non-family persons, and it is trivial: only

the family status attribute on the person is used to link these two levels. Non-family

persons are assumed to be independent of each other, and are hence synthesized in-

dependently and attached to the household.

There are a few constraints that would be useful to apply to non-family persons.

Non-family persons under 15 years of age are more likely to live in a household that

has at least one family, rather than living in a household of unrelated adults. Addition-

ally, as discussed in Chapter 3, the census codes many same-sex couples as cohabiting

non-family persons. The underlying data does not provide any information about the

distribution of genders and ages of non-family persons sharing a dwelling, however,

so no constraints can be applied.

5.5 Software

The population synthesis procedure was implemented in the R language [29]. R is

a statistical computing platform whose syntax closely resembles S [3], but with an

underlying implementation borrowed from the Scheme and Lisp languages. It was

selected largely because of good performance, concise syntax, a good set of built-in

routines for analyzing and visualizing categorical data and multiway contingency ta-

bles, and built-in log-linear and generalized linear models. While it was suitable for

prototyping and experimenting with new methods, its data storage is not efficient for

large amounts of data, and its performance is poorer than low-level languages like C.

The central components of the software are a sparse list-based implementation of
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the Iterative Proportional Fitting algorithm, and a sparse list-based conditional Monte

Carlo procedure.

5.5.1 IPF Implementation

The implementation of the Iterative Proportional Fitting procedure largely followed

the description in Chapter 4. Its inputs include a list-based representation of a PUMS

(in the R environment, this is called a data frame), a list of marginal constraints, a termi-

nation tolerance ǫ and an iteration limit. The marginal constraints are complete mul-

tiway contingency tables, which are associated with columns in the PUMS through

the use of standardized variable names. Each constraint can also include a category

mapping scheme, defining how the PUMS categories need to be collapsed in order to

match the category system used by the margin.

Marginal constraints are applied in series, in the conventional manner for IPF. This

does mean that the result is slightly dependent on the order that the constraints are ap-

plied; typically, the final constraint achieves perfect fit while earlier constraints do less

well. Dykstra’s suggestion of a parallel update procedure [17] is worth considering as

an alternative.

A small part of the IPF procedure was implemented in C for performance reasons:

collapsing the sparse list down to themarginal dimensions, and applying themarginal

update back to the weights in the sparse list. The R language provided adequate

performance for the other parts of the procedure.

5.5.2 Random Rounding and Area Suppression

To deal with random rounding, the modified IPF termination criterion described in

Chapter 4 was employed. Additionally, the full hierarchy of margins was used to

reduce rounding error in aggregate tables.
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The data did include some area suppression, but a small amount of data was avail-

able to estimate the bare minimum information for these zones: the total population.

The suppressed areas were assumed to follow the PUMA average distribution for each

margin, scaled to the appropriate total population.

5.5.3 Conditional Monte Carlo

As discussed in Chapter 4, ordinary Monte Carlo synthesis can easily be implemented

using a sparse data structure, and conditional synthesis is only slightly more compli-

cated. Suppose attributes X and Z are given, and attribute Y needs to be synthesized

using a joint probability distribution P (X,Y, Z). Then, the formula for conditional

probability is

P (Y |X,Z) =
P (X,Y, Z)

P (X,Z)
. (5.1)

In order to make a draw from P (Y |X,Z), it must be possible to find the contribut-

ing cells of P (X,Y, Z) efficiently. This is not automatic when using a list-based data

structure, since random access to the rows associated with a particular cell (i, j, k) is

not efficient. To deal with this, the list was sorted by the given attributes. This makes

it easy to find the rows associated with a particular cell, with asymptotic performance

of O(log n).

The rest of the algorithm was simple to implement, and the complete details are

shown as pseudocode in Figure 5.3. The overall performance is O(N log n), and the

operation was also implemented in C to improve performance.

Some authors have used other versions of Monte Carlo, such as drawing without

replacement [26, 28]. In such approaches, after making draw a particular agent from a

table of counts, the corresponding cell is decremented by 1 to prevent synthesis of too

large a number of persons of any particular type.

These techniques have little or no value for this dataset, because the number of cells
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Step Description Time (min.)

Multizone IPF

1a Households/dwellings 30.4

1b Persons 58.9

2 Families 10.3

Subtotal 1:45.5

Monte Carlo

3 Households/dwellings 0.9

4 Families 3.6

5a Persons (family) 10.9

5b Persons (non-family) 3.2

5c Persons (collective) 0.0

Subtotal 21.8

Overhead 9.2

Total 2:07.3

Table 5.3: Computation time for the different stages of the synthesis procedure on a

1.5GHz computer for the Toronto Census Metropolitan Area. Step numbers refer to

the stages shown in Figure 5.1.

with counts greater than or equal to 1.0 is very small; almost all cells have fractional

counts less than 1. For example, in the population of 2.7 million persons, only 20,090

persons are synthesized from cells with counts greater than or equal to 1.0.

5.6 Results

The final population was synthesized for the Toronto Census Metropolitan Area using

the associated PUMS datasets. The compute times for population synthesis are sub-

stantial, but not extravagant. As shown in Figure 5.3, the synthesis required two hours

and seven minutes to complete on an older 1.5 GHz computer with 2GB of memory.

Synthesis of this duration is not a major issue since it can be performed once before

a set of ILUTE model runs (or once per run, if different populations are desired), and
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the ILUTE model itself is considerably more compute-intensive.

Finally, the process was repeated for other CMAs using their own PUMS data: the

Hamilton CMAwas synthesized togetherwith the Kitchener andNiagara-St. Catharines

CMAs (since these three CMAs had a single shared PUMS in 1986), and the Os-

hawa CMA was also synthesized. Oshawa did not have its own PUMS in 1986, so

the Toronto PUMS was used instead. Together, these three CMAs form the Greater

Toronto/Hamilton Area, the urban region that the ILUTE project aims to study.

Using this population, any number of cross-tabulations and maps can be pro-

duced. To give a sense of the geography, Figure 5.4 shows a map of the median

number of rooms in the dwelling units in each census tract in the Toronto CMA.

This data is not available in any existing summary tables, although one table shows

household size by zone and another shows persons-per-room by zone. Without any

ground truth, the result cannot be verified, but it does match local general knowledge

of dense and/or high-rise neighbourhoods. In particular, the zones with the lowest

median number of rooms (smallest dwellings) are known to contain a large number of

tall apartment buildings (often social housing) or student residences. One surprising

zone with a median of 3 rooms per dwelling occurred in rural Niagara, but proved to

contain largely “movable dwellings,” which are otherwise rare in the Toronto area.
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Input: List W contains a joint distribution of attributes X(i), Y (j), Z(k) in

sparse list format. Each row r contains a co-ordinate for X and Y and

weights for the K possible values of Z, i.e. Wr· = {i, j, w1, w2, . . . , wK}.

There is one row for each entry in the PUMS. List A contains a

preliminary population of agents with the given attributes X and Z

already defined. Row a contains Aa· = {i, k}.

Output: List of complete agents A′ equal to A but with a new column defining j

// Ensure that identical values of given attribute X(i) are

in adjacent rows.

Sort rows of W by attribute i;1

foreach row Aa· = {i, k} of A do2

// The rows between r1 and r2 are the candidates for

synthesis given the known attribute value i.

r1, r2 = first and last rows in W containing X = i, found using a binary3

search;

// Vector w contains the weights associated with each

candidate row given i and k.

w = column of W corresponding to wk, restricted to rows between r1 and r2;4

// Convert to a probability mass function.

p = w/
∑

w;5

r = random row in range [r1, r2] selected using a Monte Carlo draw from p;6

A′
a· = {i, j, k} where j is taken from row r of W;7

end8

Figure 5.3: Algorithm showing conditional Monte Carlo synthesis using a sparse

list-based data structure. Attribute Y (j) is synthesized given known attributes

X(i) and Z(k). Attributes X and Y are from a PUMS source, while Z is a non-

PUMS variable (e.g., geographic zone). The method can be easily generalized to

a large number of attributes.
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Figure 5.4: Map showing a dwelling attribute from the synthesized population.



Chapter 6

Evaluation

It is challenging to evaluate the results of a data synthesis procedure. If any form of

complete “ground truth” were known, the synthetic population could be tested for

goodness-of-fit against the true population’s characteristics; but instead only partial

views of truth are available in smaller, four-way tables.

In theory, IPF-based procedures have many of the qualities necessary for a good

synthesis: an exact fit to their margins, while minimizing the changes to the PUMS

(using the discrimination information criterion). This does not mean that the full syn-

thesis procedure is ideal: the fit may be harmed by conflicting margins (due to ran-

dom rounding), and will almost certainly be poorer after Monte Carlo (or conditional

Monte Carlo). Furthermore, it still leaves a major question open: how much data is

sufficient for a “good” synthesis? Are the PUMS and multidimensional margins both

necessary, or could a good population be constructed with one of these two types of

data? Does the multizone method offer a significant improvement over the zone-by-

zone approach?

To answer these questions, a series of experiments was conducted. In the absence

of ground truth, each synthetic population is evaluated in terms of its goodness-of-fit

to a large collection of low-dimensional contingency tables. These validation tables

93
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are divided into the following groups:

1. One-dimensional margins for the entire PUMA, for each attribute.

2. One-dimensional margins by zone for each attribute.

3. Higher-dimensional Summary Tables for the entire PUMA.

4. Higher-dimensional Summary Tables by zone.

5. Higher-dimensional margins from PUMS that are unavailable in summary ta-

bles. A selection of 2D and 3D margins are taken from the PUMS after fitting

each to the 1–3D margins in the Summary Tables.

The complete list of tables in each group is shown in Table B.1. The evaluationwas per-

formed using a single PUMA, the Toronto Census Metropolitan Area, and excluded

the Hamilton and Oshawa CMAs used for the final ILUTE synthesis.

6.1 Goodness-of-Fit Measures

After cross-classifying the synthetic population to form one table N̂ijk, it can be com-

pared to a validation table Nijk using various goodness-of-fit statistics. This is re-

peated for each of the validation tables in turn, and the goodness-of-fit statistics in

each group are then averaged together to give an overall goodness-of-fit for that group.

The choice of evaluation statistic is challenging, with many trade-offs. Knudsen &

Fotheringham provided a good and even-handed overview of different matrix com-

parison statistics [31], framed in the context of models of spatial flows, but applicable

to many other matrix comparison problems. They reviewed three categories of statis-

tics: information theoretic, generalized distance, and traditional statistics (such as R2

and χ2). In a comparison of the statistics, their ideal was “one for which the relation-

ship between the value of the statistic and the level of error is linear,” and using this



CHAPTER 6. EVALUATION 95

benchmark they found that the Standardized Root Mean Square Error (SRMSE) and Ψ̄

were the “best” statistics. The former is a representative distance-based statistic, while

the latter is an unusual information theoretic statistic. As Voas & Williamson noted,

Ψ̄ is actually very little different from another distance-based statistic, total absolute

error [53].

SRMSE =

√

1

IJK

∑

i,j,k

(N̂ijk − Nijk)
2

1

IJK

∑

i,j,k

Nijk

(6.1)

Ψ̄ =
∑
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Nijk
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log
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∣

∣
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∣

(6.2)

However, Knudsen & Fotheringham’s definition of an “ideal” metric is somewhat

questionable. True information theoretic measures are supposed to have deep statisti-

cal underpinnings, representing the information content of a probability distribution.

The Minimum Discrimination Information statistic is equivalent to G2:

MDI = G2 = 2NI(N‖N̂)

= 2
∑

ijk

Nijk log
Nijk

N̂ijk

It does not measure goodness-of-fit per se, but rather measures the amount of infor-

mation of a cross-tabulation. Additionally, when testing fit to multiple tables with dif-

ferent sample sizes, the G2 statistic gives greater weight to large-sample tables. (For

example, when comparing the fit to a 100% Summary Table, a 20% Summary Table

and a 2% PUMS-only table, the G2 statistic would be scaled by 1, 0.2 and 0.02 respec-

tively, to account for the lower actual sample size of these tables.) For these reasons,

the G2 statistic does offer compelling advantages over the other statistics. (The other

information theoretic statistics—φ, Ψ and Ψ̄—lack the theoretical underpinnings of

G2.)

An example comparing the two types of statistics is shown in Table 6.1. In the

experiment shown, the population was fitted using a zone-by-zone method, with all
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Validation Tables N Fitted Table N̂

Average Average

Average null model Average SRMSE

Group of Validation Tables # of Cells G2 G2 ×100, 000

1. 1D STs (entire PUMA) 97 211819 2 92

2. 1D STs (by zone) 4699 369388 102 146

3. 2–3D STs (entire PUMA) 26 423265 20 297

4. 2–3D STs (by zone) 18777 529606 1599 241

5. 2–3D (only in PUMS) 604 105583 72 5580

Table 6.1: Comparison of G2 and SRMSE statistics for validation. The left two columns

show statistics on the groups of validation tables themselves: the number of cells and

the G2 of the table relative to a null model, averaged over the group. For the right

two columns, a zone-by-zone IPF fit was conducted (experiment I8) and two differ-

ent goodness-of-fit statistics were applied, the information theoretic Minimum Dis-

crimination Information (G2) statistic and the distance-based Standardized RootMean

Square Error. SRMSE is scaled by 100,000 to allow comparison.

available Summary Tables applied asmargins (identical to experiment I8 in the follow-

ing section). A good fit is expected in the first four groups of validation tables, and a

reasonable fit is expected for the final group since the initial table was the complete

PUMS. In terms of fit, the SRMSE statistic matches expectations. In terms of informa-

tion, the G2 statistic shows a huge improvement over a null model; in other words,

most of the information present in the tables is explained by the fitted population.

However, using the G2 statistic, the poorest group of validation tables is not group

five but group four (2–3D STs by zone); these tables are where most of the missing

information lies.

Nevertheless, distance-based statistics are more widespread in the literature, and

have been reported for many other population synthesis applications. For these rea-

sons, the SRMSE statistic is used as the primary evaluation metric here. It is scaled by

1000 throughout, rather than 100,000 as above.

Finally, it would be useful to also be able to apply traditional statistical tests to
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compare different models. In particular, tests such as the Akaike Information Crite-

rion (AIC) which reward parsimonious low-parameter models would be interesting

to apply. However, because the data is sparse, it is difficult to determine the number of

degrees of freedom and the number of free parameters during Iterative Proportional

Fitting. Without this information, statistical tests are not possible.

6.2 Tests of IPF Method and Input Margins

In the first series of experiments, the IPF procedure is tested with different inputs to

see how the quality of fit is affected. Three questions are tested simultaneously:

• Source Sample: How does the initial table in IPF affect the result? Can a good

fit be obtained with a constant initial table, or is the PUMS necessary?

• 1D Margins: Are 1D margins sufficient, or does a better fit result when 2D and

3D margins are applied?

• Geography: What is the difference between the zone-by-zone and multizone

approach to geographic variation?

To test these hypotheses, a set of ten fits was conducted, labelled I1 through I10. Es-

sentially, the experiments evaluate these three different questions, showing the impact

of different source samples, 1D versus 2–3D margins, and three different approaches

to geography. The input data included in each experiment are shown together with

the output goodness-of-fit in Table 6.2. The first set of experiments (I1–I4) show the re-

sults with no geographic input data, and are largely intended as a “base case” to show

the effect of better data. Experiments I5–I8 show a zone-by-zone IPF method, where

each zone is fitted independent of the others. I6 represents a “typical” application of

IPF for population synthesis: a zone-by-zone approach using 1D margins. Finally, I9
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Experiment

Almost no geography Zone-by-zone Multizone

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Input: Margins

1. 1D STs (entire PUMA) ✓ ✓ ✓ ✓ ✓ ✓

2. 1D STs (by zone) ✓ ✓ ✓ ✓ ✓ ✓

3. 2–3D STs (entire PUMA) ✓ ✓ ✓

4. 2–3D STs (by zone) ✓ ✓ ✓

5. PUMS ✓1 ✓2

Input: Source Sample 1 PUMS 1 PUMS 1 PUMS 1 PUMS 1 1

Output: SRMSE × 1000, averaged over group of validation tables

1. 1D STs (entire PUMA) 1 0 1 1 4 1 2 1 0 0

2. 1D STs (by zone) 285 285 285 285 2 3 2 1 3 1

3. 2–3D STs (entire PUMA) 192 15 2 2 187 19 7 3 15 0

4. 2–3D STs (by zone) 566 522 522 522 252 130 3 3 131 3

5. 2–3D (only in PUMS) 883 38 735 6 849 73 659 56 38 0

1 PUMS fitted to 1D margins 2 PUMS fitted to 2–3D margins

Table 6.2: Design and results of experiments I1–I10, testing goodness-of-fit of IPF under varying amounts of input data.

Each column shows a single experiment, including the input data applied (top); and goodness-of-fit after IPF (bottom).

Further details can be found in Appendix B.
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and I10 show the multizone approach suggested by Beckman et al., where the PUMS

is applied as a marginal constraint.

The combinatorial optimization method is not IPF-based, but it does operate on

a zone-by-zone basis. It is not possible to determine which of the experiments I5–I8

is “closest” to combinatorial optimization. While combinatorial optimization starts

with a random sample of the PUMS, it does not guarantee that the final result fits the

PUMS associations (validation table group 5); it almost certainly has a poorer fit to

group 5 than I6 or I8. Furthermore, the method does have some convergence issues

when applying a large number of constraints, and it is not clear whether the full set

of 2–3D constraints could be applied in a practical implementation. As a result, the

combinatorial optimization method might give a fit close to any of I5–I8, or possibly

even poorer than I5; without a direct comparison, little can be said.

6.2.1 Source Sample

To evaluate the effect of source sample, compare the use of a constant initial table

filled with ones (I1, I3, I5 and I7) to the use of the PUMS as the initial table (I2, I4, I6

and I8).1 Because a sparse IPF procedure is used, the initial table necessarily has the

sparsity pattern of the PUMS in all cases. The constant initial table’s non-zero cells were

all ones, while the PUMS initial table initially had many higher integer cells.

In all cases, the use of the PUMS for the initial table drastically improves the fit

to validation group 5 (2–3D PUMS-only) by at least an order of magnitude. In ex-

periments I2 and I6 where no 2–3D margins are applied, the use of PUMS similarly

improves the fit to validation group 3 (2–3D STs, entire PUMA). However, the improve-

ment is considerably smaller on validation group 4 (2–3D STs by zone).

All of these are expected results. The only interesting finding is for I6: there are

1Experiments I9 and I10 are excluded from this discussion, since they use the PUMS as a margin
instead of using it as the starting table.
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geographical variations in the 2–3D association pattern that are not explained by the

combination of 1D margins with geography and the PUMS.

6.2.2 1D Margins versus 2–3DMargins

To observe the effect of higher-dimensional margins, compare the experiments with

1D margins (I1, I2, I5, I6, I9) against the experiments with 2–3D margins (all others).

From a brief glance at the results, it is quickly evident that there is multiway variation

in the data that is not explained unless either the PUMS or 2–3D margins are applied.

For validation groups 1 and 3 (1D and 2–3D STs, entire PUMA), the difference between

inputting the PUMS (I2, I6, I9) or the 2–3D margins (I3, I7, I10) is fairly small. The

main difference is due to sample size: the PUMS is a 2% sample, while the margins

are drawn from 20% samples.

The primary benefit of including 2–3D margins appears to be the ability to capture

geographic variation in these 2–3 way relationships. The goodness-of-fit against these

validation tables remains poor until the 2–3D Summary Tables by zone are included

in I7, I8 and I10.

6.2.3 Zone-by-zone versus Multizone

The difference between the zone-by-zone and multizone methods was surprisingly

small. While the zone-by-zone method makes no attempt to explicitly fit validation

groups 1 and 3 (1D and 2–3D STs, entire PUMA), it still seems to achieve a fairly good

fit.

The only improvement recorded by the multizone method is in the fit to validation

group 5 (2–3D, PUMS only): I9 does better than I6 on this score, and I10 likewise does

better than I8. Nevertheless, the difference is fairly small.

The reasons for the difference lie in the contrasting approaches to the PUMS. In
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Experiment

R1 R2 R3 R4

Zone-by-Zone (like I8) ✓ ✓

Multizone (like I10) ✓ ✓

Hierarchical Margins ✓ ✓

Output: SRMSE × 1000, averaged over tables

1. 1D STs (entire PUMA) 3 1 0 0

2. 1D STs (by zone) 7 2 7 2

3. 2–3D STs (entire PUMA) 6 3 0 0

4. 2–3D STs (by zone) 7 3 7 3

5. 2–3D (only in PUMS) 58 56 0 0

Table 6.3: Design and results of experiments R1–R4, testing goodness-of-fit after using

different methods to deal with random rounding. Each column shows a single exper-

iment, including the input data applied (top) and goodness-of-fit after IPF (bottom).

many cases, the fit to the initial table decreases as more margins are included in the

IPF. The additional margins show up asmore terms in the log-linearmodel and appear

as additional free parameters during the fitting process, giving the fitted table more

freedom to vary from the source table. Deterioration of fit to the source table can be

clearly seen by comparing I2 to I6 or I4 to I8. The I6 experiment added new tables with

geographic variation; however, this does not improve the fit to the PUMA-wide 2–3D

PUMS-only tables (validation group 5). Indeed, the fit to these tables deteriorates due

to the addition of parameters.

By contrast, the multizone approach forces a fit to the PUMS, treating it as a margin

with equal importance to the other constraints. As a result, it achieves a better fit to

validation group 5.
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6.3 Effects of Random Rounding

In a second series of experiments, the effects of random rounding were tested. Ta-

ble 6.3 shows the results of four experiments. The first two (R1 and R2) show the

effects of hierarchical margins when using a zone-by-zone algorithm, and the second

two (R3 and R4) show the effects when using a multizone algorithm.

As shown, there is a small improvement in fit when using hierarchical margins.

The improvement of fit at the zonal level is somewhat surprising—after all, when

hierarchy is not used, the only input margins are the zonal tables. However, the im-

provement comes due to conflicts between tables sharing the same attributes. In R1

and R3, the fit to the final zonal table is perfect, but the other zonal tables have a poorer

fit than in R2 and R4.

Overall, this suggests that hierarchical margins are useful, but their impact on

goodness-of-fit is relatively small.

6.4 Effects of Monte Carlo

In a third series of experiments, the effects of the Monte Carlo integerization pro-

cedures are tested. The design and results of these experiments are shown in Ta-

ble 6.4. The first experiment M0 is the null case: the results of the IPF procedure

before any Monte Carlo integerization takes place. Experiment M1 shows the conven-

tional Monte Carlo procedure, where a set of persons are synthesized directly from

the IPF-fitted tabulation for persons. Experiment M2 is the conditioned Monte Carlo

procedure described in Chapter 5, where households/dwellings are synthesized by

Monte Carlo, families are conditionally synthesized on dwellings, and persons are

conditionally synthesized on families. The results are evaluated on the person popu-

lation only, to focus on the effects of the two stages of conditioning prior to generating

the persons.
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Experiment

M0 M1 M2

Multizone IPF Fit (I10) ✓ ✓ ✓

Monte Carlo (Person) ✓

Conditional Monte Carlo (Person | Family | Dwelling) ✓

Output: SRMSE × 1000, averaged over group of Person tables

1. 1D STs (entire PUMA) 0 3 8

2. 1D STs (by zone) 1 39 58

3. 2–3D STs (entire PUMA) 0 3 7

4. 2–3D STs (by zone) 3 80 99

5. 2–3D (only in PUMS) 0 12 21

Table 6.4: Design and results of experiments M0–M2, testing goodness-of-fit after ap-

plying different Monte Carlo methods. Each column shows a single experiment, in-

cluding the input data applied (top) and goodness-of-fit after IPF (bottom). TheMonte

Carlo procedure is non-deterministic, so a series of 30 runs were performed, with the

average error shown here for M1 and M2.

As expected, the goodness-of-fit deteriorates after applying Monte Carlo, and de-

teriorates further using the conditional procedure. The deterioration from M0 to M1

is somewhat larger than the deterioration from M1 to M2. In essence, this shows that

the conditional synthesis procedure employed here does not have a major impact on

the goodness-of-fit. Even after two stages of conditioning (from dwellings to families

to persons), a reasonable goodness-of-fit is maintained.

Additionally, among the tables in validation group 1 (1D STs, entire PUMA) in Ta-

ble 6.4, there is one clear outlier: the fit to CTCODE had an average SRMSE×1000 of

16 for M1 and 30 for M2. This poor fit—and the poorer fits to validation group 2 (1D

STs, by zone)—might be corrected by stratifying the Monte Carlo synthesis by zone,

although this could cause a deterioration of the fits to the non-geographic tables.
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Conclusion

After conducting the experiments in Chapter 6, it appears that using all available

data is worthwhile; the multizone method offers small benefits over the zone-by-zone

method; and hierarchical margins offer a very small benefit for addressing random

rounding issues.

The next stage in the ILUTE synthesis effort will link this population with other

data sources to synthesize the vehicles owned by each household, the place-of-work

of the household members who are active in the labour market, and the business es-

tablishments that provide employment.

In conclusion, several of the problems of existing population synthesis procedures

were successfully resolved in this research. The first major contribution is a sparse

list-based Iterative Proportional Fitting procedure that combines the advantages of

IPF and reweighting: an entropy-maximizing procedure that preserves the association

pattern in the PUMS while fitting a set of disparate marginal distributions, making

possible a large set of agent attributes with fine categorization. This technique pro-

duces results identical to the IPF procedure, but makes more efficient use of memory

and time when a large number of attributes are synthesized.

The second major contribution was a technique for synthesizing relationships be-
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tween agents using IPF and conditional probabilities. This allows persons to be grouped

into aggregations such as families and households while fitting known distributions at

the person, family and household level, and enforcing a limited number of constraints

between the members of an aggregation. The results show that these relationships can

be synthesized with only a minimal impact on the fit at any single level.
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Appendix A

Attribute Definitions

The attribute definitions and descriptions below are largely quoted directly from the

Census guides to the public use microdata files, with some adaptations for the simpler

categories used for population synthesis [43, 44, 46].

A.1 Person Attributes

• AGEP: Age.

Refers to age at last birthday (as of the census reference date, June 3, 1986). This
variable is derived from date of birth.

1. 15–17.

2. 18–19.

3. 20–24.

4. 25–34.

5. 35–44.

6. 45–54.

7. 55–64.

8. 65 or older.

• CFSTAT: Census family status and living arrangements.

Refers to the classification of the population into family and non-family persons.
Family persons are householdmembers who belong to a census family (who live
in the same dwelling and have a husband-wife or parent-never-married child
relationship). Non-family persons are household members who do not belong
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to a census family. These categories can be further broken down as indicated
by the classes below. (For complete definition of census family status and living
arrangements, see 1986 Census Dictionary.)

1. Husband, wife or common-law partner.

2. Child in husband-wife family.

3. Lone parent.

4. Child in a lone-parent family.

5. Non-family person living with others.

6. Non-family person living alone.

7. Not applicable. Includes persons in collectives, persons in households out-
side Canada and temporary residents

• HLOSP: Highest level of schooling.

Refers to the highest grade or year of elementary or secondary school attended,
or the highest year of university or other non-university completed. University
education is considered to be above other non-university. Also, the attainment
of a degree, certificate or diploma is considered to be at a higher level than years
completed or attended without an educational qualification.

1. Less than Grade 9. Includes no schooling or kindergarten only.

2. Grades 9–13.

3. Secondary (high) school graduation certificate.

4. Trades certificate or diploma; or other non-university education only, with
trades certificate or diploma.

5. Other non-university education only, without trades or other non-university
certificate or diploma.

6. Other non-university education only, with other non-university certificate
or diploma.

7. University without certificate, diploma or degree.

8. University with certificate or diploma. Includes trade certificates, other
non-university certificate and university certificate below bachelor level.

9. University with bachelor’s degree or higher. Includes university certificate
above bachelor level.

• LFACT: Labour force activity.

Refers to the labour market activity of the population 15 years of age and over,

excluding institutional residents, who, in the week prior to enumeration (June 3,

1986) were Employed, Unemployed or Not in the Labour Force. Special note: the

census labour force activity concepts have not changed between 1981 and 1986.
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However, the processing of the data was modified causing some differences. In

the 1986 Census, contrary to previous censuses, a question on school attendance

was not asked. This question was used to edit the labour force activity variable,

specifically unemployment. Consequently, the processing differences affect the

unemployment population and are mostly concentrated among the 15-19-year

age group.

1. Employed. The Employed include those persons who, during the week
prior to enumeration:

a. did any work at all excluding housework or other maintenance or re-
pairs around the home and volunteer work; or

b. were absent from their jobs or businesses because of own temporary
illness or disability, vacation, labour dispute at their place of work, or
were absent for other reasons.

2. Unemployed. The Unemployed include those persons who, during the
week prior to enumeration:

a. were without work, had actively looked for work in the past four weeks
and were available for work; or

b. had been on lay-off and expected to return to their job; or

c. had definite arrangements to start a new job in four weeks or less.

3. Not in Labour Force (last worked in 1985–1986). The Not in Labour Force
classification refers to those persons who, in the week prior to enumeration,
were unwilling or unable to offer or supply their labour services under con-
ditions existing in their labour markets. It includes persons who looked for
work during the last four weeks but who were not available to start work
in the reference week, as well as persons who did not work, did not have a
new job to start in four weeks or less, were not on temporary lay-off or did
not look for work in the four weeks prior to enumeration.

4. Not in Labour Force (last worked prior to 1985, or never worked).

• OCC81P: Occupation, 1980 classification basis.

This refers to the kind of work the person was doing during the reference week,
as determined by their reporting of their kind of work and the description of the
most important duties. If the person did not have a job during the week prior
to enumeration, the data relate to the job of longest duration since January 1,
1985. Persons with two or more jobs were to report the information for the job
at which they worked the most hours.

1. Managerial, administrative and related occupations. Includes major group
11

2. Occupations in natural sciences, engineering and mathematics. Includes
major group 21
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3. Occupations in social sciences and related fields. Includes major group 23

4. Teaching and related occupations. Includes major group 27

5. Occupations in medicine and health. Includes major group 31

6. Artistic, literary, recreational and related occupations. Includesmajor group
33

7. Clerical and related occupations. Includes major group 41

8. Sales occupations. Includes major group 51

9. Service occupations. Includes major group 61

10. Farming, horticultural and animal husbandry occupations, and other pri-
mary occupations. Includes major groups 71, 73, 75 and 77

11. Processing occupations. Includes major group 81/82

12. Machining and product fabricating, assembling & repairing occupations.
Includes major groups 83 and 85

13. Construction trades occupations. Includes major group 87

14. Transport equipment operating occupations. Includes major group 91

15. Other occupations. Includes major groups 25, 93, 95, 99

16. Not applicable. Includes persons who have not worked since January 1,
1985.

• SEXP: Sex.

Refers to the gender of the respondent.

1. Female.

2. Male.

• TOTINCP: Total income.

Refers to the total money income received by individuals 15 years of age and

over during the calendar year 1985 from the sources listed below.

1. Wages and Salaries. Refers to gross wages and salaries before deductions

for such items as income tax, pensions, unemployment insurance, etc. In-

cluded in this source are military pay and allowances, tips, commissions,

cash bonuses as well as all types of casual earnings in calendar year 1985.

All income “in kind” such as free board and lodging is excluded.

2. Net Non-farm Self-employment Income. Refers to net income (gross re-

ceipts minus expenses of operation such as wages, rents, depreciation, etc.)

received during calendar year 1985 from the respondent’s non-farm unin-

corporated business or professional practice. In the case of a partnership,

only the respondent’s share was to be reported. Also included is net income
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from persons baby-sitting in their own homes, operators of direct distribu-

torships such as selling and delivering cosmetics, as well as from free-lance

activities of artists, writers, music teachers, hairdressers, dressmakers, etc.

3. Net Farm Self-employment Income. Refers to net income (gross receipts

from farm sales minus depreciation and cost of operation) received during

calendar year 1985 from the operation of a farm, either on own account

or in partnership. In the case of partnerships, only the respondent’s share

of income was to be reported. Also included are advance, supplementary

or assistance payments to farmers by federal or provincial governments.

However, the value of income “in kind”, such as agricultural products pro-

duced and consumed on the farm is excluded.

4. Family Allowances. Refers to total allowances paid in calendar year 1985

by the federal and provincial governments in respect of dependent children

under 18 years of age. These allowances, though not collected directly from

the respondents, were calculated and included in the income of one of the

parents.

5. Federal Child Tax Credits. Refers to federal child tax credits paid in calen-

dar year 1985 by the federal government in respect of dependent children

under 18 years of age. No information was collected from the respondents

on child tax credits. Instead, these were calculated in the course of pro-

cessing and assigned, where applicable, to one of the parents in the census

family on the basis of information on children in the family and the family

income.

6. Old Age Security Pension and Guaranteed Income Supplement. Refers to

old age security pensions and guaranteed income supplements paid to per-

sons 65 years of age and over, and spouses’ allowances paid to 60 to 64

year-old spouses of old age security recipients by the federal government

only during calendar year 1985. Also included are extended spouses’ al-

lowances paid to 60 to 64 year-old widows/widowers whose spouse was

an old age security pension recipient.

7. Benefits from Canada or Quebec Pension Plan. Refers to benefits received

in calendar year 1985 under the Canada or Quebec Pension Plan, e.g., retire-

ment pensions, survivors’ benefits, disability pensions. Does not include re-

tirement pensions of civil servants, RCMP and military personnel or lump-

sum death benefits.

8. Benefits from Unemployment Insurance. Refers to total unemployment in-

surance benefits received in calendar year 1985, before income tax deduc-

tions. It includes benefits for sickness, maternity, fishing, work sharing,

retraining and retirement received under the Federal Unemployment In-
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surance program.

9. Other Income from Government Sources. Refers to all transfer payments,

excluding those covered as a separate income source (family allowances,

federal child tax credits, old age security pensions and guaranteed income

supplements, Canada/Quebec Pension Plan benefits and unemployment

insurance benefits) received from federal, provincial ormunicipal programs

in calendar year 1985. This source includes transfer payments received by

persons in need such as mothers with dependent children, persons tem-

porarily or permanently unable to work, elderly individuals, the blind and

the disabled. Included are provincial income supplement payments to se-

niors to supplement old age security and guaranteed income supplement

and provincial payments to seniors to help offset accommodation costs.

Also included are other transfer payments such as for training under the

National Training Program (NTP), veterans’ pensions, war veterans’ al-

lowance, pensions to widows and dependants of veterans, workers’ com-

pensation, etc. Additionally, provincial tax credits and allowances claimed

on the income tax return are included.

10. Dividends and Interest on Bonds, Deposits and Savings Certificates, and

Other Investment Income. Refers to interest received in calendar year 1985

fromdeposits in banks, trust companies, co-operatives, credit unions, caisses

populaires, etc., as well as interest on savings certificates, bonds and deben-

tures and all dividends from both Canadian and foreign stocks. Also in-

cluded is other investment income from either Canadian or foreign sources

such as net rents from real estate, mortgage and loan interest received, regu-

lar income from an estate or trust fund, and interest from insurance policies.

11. Retirement Pensions, Superannuation and Annuities. Refers to all regular

income received during calendar year 1985 as the result of having been a

member of a pension plan of one or more employers. It includes payments

received from all annuities, including payments from a mature registered

retirement savings plan (RRSP) in the form of a life annuity, a fixed term an-

nuity, a registered retirement income fund or an income-averaging annuity

contract; pensions paid to widows or other relatives or deceased pension-

ers; pensions of retired civil servants, Armed Forces personnel and RCMP

officers; annuity payments received from the Canadian Government Annu-

ities Fund, an insurance company, etc. Does not include lump-sum death

benefits, lump-sum benefits or withdrawals from a pension plan or RRSP

or refunds of overcontributions.

12. Other Money Income. Refers to regular cash income received during calen-

dar year 1985 and not reported in any of the other nine sources listed on the

questionnaire, e.g., alimony, child support, periodic support from other per-
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sons not in the household, net income from roomers and boarders, income

from abroad (except dividends and interest), non-refundable scholarships

and bursaries, severance pay, royalties, strike pay.

13. Receipts Not Counted as Income. Gambling gains and losses, money inher-

ited during the year in a lump sum, capital gains or losses, receipts from the

sale of property or personal belongings, income tax refunds, loan payments

received, loans repaid to an individual as the lender, lump sum settlements

of insurance policies, rebates of property taxes and other taxes, and refunds

of pension contributions were excluded as well as all income in kind such

as free meals, living accommodation, or food and fuel produced on own

farm.

Individuals immigrating to Canada in 1986 have zero income. Also, because
of response problems, all individuals in Hutterite colonies were assigned zero
income. Furthermore, data on households, economic families, unattached in-
dividuals, census families and non-family persons relate to private households
only.

1. Negative income.

2. $0.

3. $1–$999.

4. $1,000–$2,999.

5. $3,000–$4,999.

6. $5,000–$6,999.

7. $7,000–$9,999.

8. $10,000–$14,999.

9. $15,000–$19,999.

10. $20,000–$24,999.

11. $25,000–$29,999.

12. $30,000–$34,999.

13. $35,000 or more.

• CTCODE: Census Tract.

Census Tract number

731 different identifying codes.
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A.2 Family Attributes

• AGEF: Age of wife or female lone parent.

Refers to age at last birthday (as of the census reference date, June 3, 1986). This
variable is derived from date of birth.

1. 15–17.

2. 18–19.

3. 20–24.

4. 25–34.

5. 35–44.

6. 45–54.

7. 55–64.

8. 65 or older.

9. Not applicable. Includes male lone-parent families.

• AGEM: Age of husband or male lone parent.

Refers to age at last birthday (as of the census reference date, June 3, 1986). This
variable is derived from date of birth.

1. 15–17.

2. 18–19.

3. 20–24.

4. 25–34.

5. 35–44.

6. 45–54.

7. 55–64.

8. 65 or older.

9. Not applicable. Includes female lone-parent families.

• CFSIZE: Number of persons in census family.

Refers to the classification of census families by the number of persons in the
family.

1. Two persons.

2. Three persons.

3. Four persons.

4. Five persons.

5. Six persons.
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6. Seven persons.

7. Eight or more persons.

• CFSTRUC: Census family structure.

Refers to the classification of census families into husband-wife families (with or

without children present) and lone-parent families by sex of parent.

The category ’Without children present’ for 1986 includes all childless husband-
wife families as well as husband-wife families with children no longer at home.
In 1981, these two categories were exclusive.

1. Husband-wife family.

2. Lone female parent.

3. Lone male parent.

• CHILDA: Number of children in census family at home under 6 years of age.

1. None.

2. One child.

3. Two or more children.

• CHILDB: Number of children in census family at home 6 to 14 years of age.

1. None.

2. One child.

3. Two children.

4. Three or more children.

• CHILDC: Number of children in census family at home 15 to 17 years of age.

1. None.

2. One child.

3. Two or more children.

• CHILDDE: Number of children in census family at home 18 to 24 years of age

and 25 years of age or over.

1. No children 18 to 24, no children 25 or over.

2. One child 18 to 24, no children 25 or over.

3. Two or more children 18 to 24, no children 25 or over.

4. No children 18 to 24, one child 25 or over.

5. One child 18 to 24, one child 25 or over.
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6. Two or more children 18 to 24, one child 25 or over.

7. No children 18 to 24, two or more children 25 or over.

8. One child 18 to 24, two or more children 25 or over.

9. Two or more children 18 to 24, two or more children 25 or over.

• HHNUMCF: Number of census families in household.

1. One census family.

2. Two or more census families.

• LFACTF: Labour force activity of wife or female lone parent.

Refers to the labour market activity of the wife or female lone parent, who, in

the week prior to enumeration (June 3, 1986) were Employed, Unemployed or

Not in the Labour Force. Special note: the census labour force activity concepts

have not changed between 1981 and 1986. However, the processing of the data

was modified causing some differences. In the 1986 Census, contrary to previ-

ous censuses, a question on school attendance was not asked. This question was

used to edit the labour force activity variable, specifically unemployment. Con-

sequently, the processing differences affect the unemployment population and

are mostly concentrated among the 15-19-year age group.

• Employed. The Employed include those persons who, during the week prior to
enumeration:

1. did any work at all excluding housework or other maintenance or repairs
around the home and volunteer work; or

2. were absent from their jobs or businesses because of own temporary illness
or disability, vacation, labour dispute at their place of work, or were absent
for other reasons.

1. Unemployed. The Unemployed include those persons who, during the
week prior to enumeration:

a. were without work, had actively looked for work in the past four weeks
and were available for work; or

b. had been on lay-off and expected to return to their job; or

c. had definite arrangements to start a new job in four weeks or less.

2. Not in Labour Force (last worked in 1985–1986). The Not in Labour Force
classification refers to those persons who, in the week prior to enumeration,
were unwilling or unable to offer or supply their labour services under con-
ditions existing in their labour markets. It includes persons who looked for
work during the last four weeks but who were not available to start work
in the reference week, as well as persons who did not work, did not have a



APPENDIX A. ATTRIBUTE DEFINITIONS 123

new job to start in four weeks or less, were not on temporary lay-off or did
not look for work in the four weeks prior to enumeration.

3. Not in Labour Force (last worked prior to 1985, or never worked).

4. Not applicable. Includes male lone parent families.

• LFACTM: Labour force activity of husband or male lone parent.

Refers to the labour market activity of the husband or male lone parent, who, in

the week prior to enumeration (June 3, 1986) were Employed, Unemployed or

Not in the Labour Force. Special note: the census labour force activity concepts

have not changed between 1981 and 1986. However, the processing of the data

was modified causing some differences. In the 1986 Census, contrary to previ-

ous censuses, a question on school attendance was not asked. This question was

used to edit the labour force activity variable, specifically unemployment. Con-

sequently, the processing differences affect the unemployment population and

are mostly concentrated among the 15-19-year age group.

1. Employed. The Employed include those persons who, during the week
prior to enumeration:

a. did any work at all excluding housework or other maintenance or re-
pairs around the home and volunteer work; or

b. were absent from their jobs or businesses because of own temporary
illness or disability, vacation, labour dispute at their place of work, or
were absent for other reasons.

2. Unemployed. The Unemployed include those persons who, during the
week prior to enumeration:

a. were without work, had actively looked for work in the past four weeks
and were available for work; or

b. had been on lay-off and expected to return to their job; or

c. had definite arrangements to start a new job in four weeks or less.

3. Not in Labour Force (last worked in 1985–1986). The Not in Labour Force
classification refers to those persons who, in the week prior to enumeration,
were unwilling or unable to offer or supply their labour services under con-
ditions existing in their labour markets. It includes persons who looked for
work during the last four weeks but who were not available to start work
in the reference week, as well as persons who did not work, did not have a
new job to start in four weeks or less, were not on temporary lay-off or did
not look for work in the four weeks prior to enumeration.

4. Not in Labour Force (last worked prior to 1985, or never worked).

5. Not applicable. Includes female lone parent families.

• NUCHILD: Number of children in census family at home.
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1. None.

2. One child.

3. Two children.

4. Three children.

5. Four children.

6. Five children.

7. Six children.

8. Seven children.

9. Eight or more children.

• ROOM: Number of rooms.

Refers to the number of rooms in a dwelling. A room is an enclosed area within
a dwelling which is finished and suitable for year-round living.

1. 1 room.

2. 2 rooms.

3. 3 rooms.

4. 4 rooms.

5. 5 rooms.

6. 6 rooms.

7. 7 rooms.

8. 8 rooms.

9. 9 rooms.

10. 10 or more rooms.

• TENURE: Tenure.

Refers to whether some member of the household owns or rents the dwelling.

1. Owned (with or without mortgage).

2. Rented (for cash, other). Includes families and non-family persons who rent
their dwellings and reserve dwellings.

• CTCODE: Census Tract.

Census Tract number

731 different identifying codes
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A.3 Dwelling/Household Attributes

• BUILTH: Period of construction.

Refers to the period in time duringwhich the building or dwellingwas originally
constructed.

1. 1920 or before.

2. 1921–1945.

3. 1946–1960.

4. 1961–1970.

5. 1971–1975.

6. 1976–1980.

7. 1981–1986. Includes the first five months only of 1986.

• DTYPEH: Structural type of dwelling.

Refers to the structural characteristics and/or dwelling configuration, that is,
whether the dwelling is a detached single house, apartment, etc.

1. Single-detached house.

2. Apartment in a building that has five or more storeys.

3. Apartment in a building that has less than five storeys.

4. Semi-detached house.

5. Apartment or flat in a detached duplex; row house or other single attached
house.

6. Mobile and other movable.

• HHNUEF: Number of economic families in household.

Refers to the presence and number of economic families in the household. An
economic family is defined as a group of individuals sharing a common dwelling
unit and related by blood, marriage, adoption or common law.

1. None.

2. One or more economic families.

• HHNUMCF: Number of census families in household.

1. None.

2. One census family.

3. Two or more census families.
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• HHSIZE: Household size.

Refers to the total number of persons in a private household.

1. One.

2. Two.

3. Three.

4. Four.

5. Five.

6. Six.

7. Seven.

8. Eight or more persons.

• PAYH: Monthly gross rent or owner’s monthly major payments.

Refers to the total average monthly payments paid by tenant or owner house-
holds to secure shelter. Owner’s major payments include payments for elec-
tricity, oil, gas, coal, wood or other fuels, water and other municipal services,
monthly mortgage payments, and property taxes (municipal and school).

1. $0–$199.

2. $200–$399.

3. $400–$699.

4. $700–$999.

5. $1000 or more.

• PPERROOM: Number of persons per room.

1. 0–0.5.

2. 0.6–1.0.

3. 1.1–1.5.

4. 1.6–2.0.

5. 2.1 or more.

• ROOM: Number of rooms.

Refers to the number of rooms in a dwelling. A room is an enclosed area within
a dwelling which is finished and suitable for year-round living.

1. 1 room.

2. 2 rooms.

3. 3 rooms.
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4. 4 rooms.

5. 5 rooms.

6. 6 rooms.

7. 7 rooms.

8. 8 rooms.

9. 9 rooms.

10. 10 or more rooms.

• TENURH: Tenure.

Refers to whether some member of the household owns or rents the dwelling.

1. Owned (with or without mortgage).

2. Rented (for cash, other). Includes families and non-family persons who rent
their dwellings and reserve dwellings.

• CTCODE: Census Tract.

Census Tract number

731 different identifying codes.



Appendix B

Detailed Results

Additional details of the results and evaluation procedure are included in this ap-

pendix.
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1D STs (entire PUMA) 1D STs (by zone)

AGEP (6) CTCODE × AGEP (4386)

CFSTAT (5) CTCODE × CFSTAT (3655)

HLOSP (6) CTCODE ×HLOSP (4386)

LFACT (3) CTCODE × LFACT (2193)

OCC81P (16) CTCODE × OCC81P (11696)

SEXP (2) CTCODE × SEXP (1462)

CTCODE (731)

2–3D STs (entire PUMA) 2–3D STs (by zone) 2–3D (only in PUMS)

AGEP × CFSTAT (20) CTCODE × AGEP × CFSTAT (14620) AGEP × TOTINCP (104)

AGEP × CFSTAT × SEXP (40) CTCODE × AGEP × CFSTAT × SEXP (29240) CFSTAT ×HLOSP (63)

AGEP ×HLOSP (36) CTCODE × AGEP ×HLOSP (26316) CFSTAT × OCC81P (112)

AGEP ×HLOSP × SEXP (72) CTCODE × AGEP ×HLOSP × SEXP (52632) CFSTAT × TOTINCP (91)

AGEP × LFACT (18) CTCODE × AGEP × LFACT (13158) HLOSP × OCC81P (144)

AGEP × LFACT × SEXP (36) CTCODE × AGEP × LFACT × SEXP (26316) HLOSP × TOTINCP (117)

AGEP × SEXP (12) CTCODE × AGEP × SEXP (11696) OCC81P × TOTINCP (208)

CFSTAT × SEXP (10) CTCODE × CFSTAT × SEXP (7310) AGEP × CFSTAT ×HLOSP (504)

HLOSP × LFACT (21) CTCODE ×HLOSP × LFACT (15351) AGEP × CFSTAT × OCC81P (896)

HLOSP × LFACT × SEXP (42) CTCODE ×HLOSP × LFACT × SEXP (30702) AGEP × CFSTAT × TOTINCP (728)

HLOSP × SEXP (12) CTCODE ×HLOSP × SEXP (8772) AGEP ×HLOSP × TOTINCP (936)

LFACT × SEXP (6) CTCODE × LFACT × SEXP (4386) CFSTAT ×HLOSP × OCC81P (1008)

OCC81P × SEXP (32) CTCODE × OCC81P × SEXP (23392) CFSTAT ×HLOSP × TOTINCP (819)

SEXP × TOTINCP (24) CTCODE × SEXP × TOTINCP (17544) CFSTAT × OCC81P × TOTINCP (1456)

HLOSP × OCC81P × TOTINCP (1872)

Table B.1: Validation tables used to evaluate the goodness-of-fit of synthetic population, with the cell count in parentheses.



APPENDIX B. DETAILED RESULTS 130

Experiment

Almost no geography Zone-by-zone Multizone

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

1. 1D STs (entire PUMA)

AGEP 0 1 1 1 5 1 2 1 0 0

CFSTAT 1 0 0 1 3 2 2 1 0 0

CTCODE 0 0 1 1 2 2 1 1 1 1

HLOSP 0 0 1 1 2 1 1 1 0 0

LFACT 3 1 3 1 2 1 2 1 0 0

OCC81P 0 0 0 0 9 3 7 2 0 0

SEXP 0 1 0 0 3 1 1 1 0 0

2. 1D STs (by zone)

CTCODE × AGEP 311 309 309 309 2 3 1 1 3 1

CTCODE × CFSTAT 408 407 407 407 4 6 3 2 7 2

CTCODE × HLOSP 401 402 402 402 3 3 3 3 3 3

CTCODE × LFACT 157 156 156 156 4 3 3 2 3 2

CTCODE × OCC81P 439 437 437 437 0 0 1 0 1 1

CTCODE × SEXP 0 0 0 0 2 1 1 1 1 1

3. 2–3D STs (entire PUMA)

AGEP × CFSTAT 286 13 2 1 272 13 3 1 13 0

AGEP × CFSTAT × SEXP 320 14 2 2 303 20 3 1 14 0

AGEP × HLOSP 224 20 2 3 224 39 14 7 20 0

AGEP × HLOSP × SEXP 273 29 2 3 271 44 16 8 30 0

AGEP × LFACT 222 10 3 2 214 8 7 2 10 0

AGEP × LFACT × SEXP 276 12 3 2 265 13 9 4 12 0

AGEP × SEXP 105 3 2 1 99 7 2 1 3 0

CFSTAT × SEXP 68 5 0 1 61 10 2 1 5 0

HLOSP × LFACT 232 38 3 2 229 38 6 2 38 0

HLOSP × LFACT × SEXP 282 44 3 2 280 44 8 3 44 0

HLOSP × SEXP 67 10 1 2 69 7 2 1 10 0

LFACT × SEXP 84 3 3 1 83 2 2 1 2 0

OCC81P × SEXP 244 6 0 0 242 10 14 3 6 0

SEXP × TOTINCP 0 1 0 1 12 7 14 7 0 0

4. 2–3D STs (by zone)

CTCODE × AGEP × CFSTAT 835 776 776 776 348 153 5 4 154 4

CTCODE × AGEP × CFSTAT × SEXP 871 800 800 800 405 222 7 5 223 5

CTCODE × AGEP × HLOSP 661 618 617 617 334 199 3 2 196 2

CTCODE × AGEP × HLOSP × SEXP 697 637 636 636 410 268 3 2 267 2

CTCODE × AGEP × LFACT 535 475 475 475 259 91 2 2 91 2

CTCODE × AGEP × LFACT × SEXP 580 497 497 497 331 155 3 2 156 2

CTCODE × AGEP × SEXP 388 354 362 354 173 88 0 0 88 0

CTCODE × CFSTAT × SEXP 434 426 426 426 105 83 4 3 82 3

CTCODE × HLOSP × LFACT 643 594 592 592 284 130 2 2 131 2

CTCODE × HLOSP × LFACT × SEXP 689 623 622 622 370 192 3 2 193 3

CTCODE × HLOSP × SEXP 413 408 407 407 114 77 1 1 77 1

CTCODE × LFACT × SEXP 187 166 166 166 95 38 2 2 39 2

CTCODE × OCC81P × SEXP 553 489 489 489 297 125 6 5 126 5

CTCODE × SEXP × TOTINCP 444 444 444 444 3 5 3 3 7 4

5. 2–3D (only in PUMS)

AGEP × TOTINCP 479 9 434 4 461 27 389 23 9 0

CFSTAT × HLOSP 255 38 176 3 260 52 171 35 38 0

CFSTAT × OCC81P 353 9 253 1 334 27 239 28 9 0

CFSTAT × TOTINCP 358 6 304 3 341 23 278 23 6 0

HLOSP × OCC81P 539 41 298 2 516 54 253 30 40 0

HLOSP × TOTINCP 422 29 373 3 363 47 299 33 29 0

OCC81P × TOTINCP 746 6 751 2 726 48 723 45 6 0

AGEP × CFSTAT × HLOSP 923 73 619 12 919 134 458 74 73 0

AGEP × CFSTAT × OCC81P 1198 50 755 10 1158 75 623 61 49 0

AGEP × CFSTAT × TOTINCP 1117 27 952 9 1072 63 863 56 27 0

AGEP × HLOSP × TOTINCP 1111 54 995 10 1066 100 850 61 54 0

CFSTAT × HLOSP × OCC81P 1189 80 865 6 1152 113 780 81 80 0

CFSTAT × HLOSP × TOTINCP 1071 57 976 7 991 103 849 80 57 0

CFSTAT × OCC81P × TOTINCP 1798 25 1771 6 1742 112 1684 107 26 0

HLOSP × OCC81P × TOTINCP 1684 67 1501 7 1622 127 1427 100 67 0

Table B.2: Detailed results of experiments I1–I10, testing goodness-of-fit of IPF under

varying amounts of input data. Each column shows the results of a single experiment,

measured using SRMSE ×1000 against a single validation table. The input data and

description of these experiments can be found in Table 6.2.


