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Abstract Agent-based microsimulation models of transportation, land use or other

socioeconomic processes require an initial synthetic population derived from census

data, conventionally created using the Iterative Proportional Fitting (IPF) procedure.

This paper introduces a novel computational method that allows the synthesis of many

more attributes and finer attribute categories than previous approaches, both of which

are long-standing limitations discussed in the literature. Additionally, a new approach

is used to fit household and person zonal attribute distributions simultaneously. This

technique was first adopted to address limitations specific to Canadian census data,

but could also be useful in U.S. and other applications. The results of each new method

are evaluated empirically in terms of goodness-of-fit.

Keywords iterative proportional fitting · population synthesis · microsimulation ·

agent-based · census microdata · transportation models · trip forecasting

1 Introduction

Agent-based microsimulation models forecast the future state of an aggregate system

by simulating the behavior of a number of individual agents over time. These models are

attracting interest from many fields, including activity-based travel demand modeling.

The model output is usually the spatial arrangement of travel patterns (including the

mode of travel used), and the agents are usually persons, families or households. The

execution of such a model can be divided into two steps: the creation of an initial set

of agents, their attributes and the system’s state at some initial time; and a series of

subsequent steps forward, where the state of each agent and the system as a whole is

advanced by a timestep (for example, one year per step).

D.R. Pritchard
Metrolinx, 20 Bay St. Suite 901 Toronto, ON, Canada M5S 1A4
E-mail: drpritch@gmail.com

E.J. Miller
Cities Centre, University of Toronto, 455 Spadina Ave., Suite 400, Toronto, ON, Canada
M5S 2G8

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11116-011-9367-4 


2

The relationships between agents are also important. For example, members of a

household do not act entirely independently; they share resources and may choose to

travel together in a single vehicle, to adjust their travel patterns to suit each others’

schedules, or to make decisions about home ownership based on all household mem-

bers’ needs. In an integrated land use/transportation model, major decisions such as

household relocation are intimately linked to the behavior of persons in the household.

Consequently, it is also important to have accurate relationships between agents and

a realistic grouping of persons into households. The spatial distribution of attributes

also needs to be accurate at both the household level and the person level.

Unfortunately, the census data often used to support microsimulation models does

not make this possible. For privacy reasons, many national censuses remove spatial

detail when providing detailed information about particular households or persons.

In some countries, linkages between households and persons are also stripped. Conse-

quently, “population synthesis” methods are necessary to fill in this information.

This paper focuses on three aspects of population synthesis. After an overview of

previous work (Section 2), the conventional approach (Beckman et al 1996) is altered

to support a larger number of attributes per agent (Section 3), adopting some ideas

from an alternative reweighting approach (Williamson et al 1998). Second, a new ap-

proach to relationship synthesis is proposed that allows person- and household-level

agents to be synthesized with the correct geographic distribution of attributes at both

levels simultaneously (Section 4). The new relationship method is also applicable to

datasets without linkages between the person and household levels, such as the Cana-

dian census. Third, the implications of “random rounding” in the Canadian census are

briefly discussed (Section 5). Finally, the effects of varying amounts of input data on

the synthesis procedure are evaluated (Section 6) and concluding remarks (Sections 7

and 8).

While the methods were developed to support the ILUTE integrated land use/

transportation model (Salvini and Miller 2005), this paper is relevant to a broad group

of socioeconomic models that use microsimulation methods.

1.1 Notation

A three-way contingency table nijk (or sometimes n) cross-classifies variables X, Y

and Z into I, J and K categories respectively. Each cell nijk is a count of observations

classified into category i of the first variable, category j of the second variable and

category k of the third variable. The conventional notation ni++ is used to indicate

a one-way margin of nijk. Each cell ni++ =
∑

j

∑

k nijk of this margin contains the

number of observations where variable X was observed in category i. The notation n

is shorthand for n+++, the total number of observations in table nijk. Variable Z(k)

will consistently represent geographic zones here.

2 Previous Work

2.1 Iterative Proportional Fitting

The IPF algorithm (Deming and Stephan 1940) is a method for adjusting a source

contingency table (denoted with lower-case n) to match known marginal totals for some
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target population (denoted with upper-case N). First, a “source” population is sampled

and cross-classified to form a multiway table nij . A similarly structured multiway

table Nij is desired for some target population, but less information is available about

the target: typically, some marginal totals Ni+ and N+j are known. The complete

multiway table Nij of the target population is never known, but the IPF procedure

is used to find an estimate N̂ij . This is achieved through repeated modifications of

the table nij . The result is unique and exactly satisfies the margins, except in cases

where entire rows/columns are zero in the source sample and non-zero in the margin.

The method extends easily to higher dimensional tables cross-classifying more than

two variables, and also to higher-dimension margins (Deming and Stephan 1940).

IPF minimizes discrimination information or relative entropy (Little and Wu 1991).

That is, the fitted table N̂ minimizes

∑

i

∑

j

N̂ij log(N̂ij/nij) (1)

provided that zeroes are treated using the following convention (Csiszár 1975),

log 0 = −∞, log
a

0
= +∞, 0 · ±∞ = 0 (2)

The relationship between a cell in a three-way fitted table and a non-zero cell in the

source table can be expressed as

log N̂ijk/nijk = λ+ λX(i) + λY (j) + λZ(k) (3)

forNi++,N+j+ andN++k margins, and some suitable choice of λ parameters (Stephan

1942; Agresti 2002). This has the exact same form as a log-linear model (Wickens 1989)

and explains all of the variance of the data in the left-hand side. The number of pa-

rameters in the model is 1+ (I − 1)+ (J − 1)+ (K − 1), proportional to the number of

cells in the margins. A similar model can be constructed for any set of margins applied

during the IPF procedure, by adding λ terms that correspond to the variables in the

margins; the number of parameters remains proportional to the number of marginal

cells. The presence of zeroes in the source table complicates the analysis, however.

The IPF procedure is capable of operating in the presence of zeroes in either the

source table or the margins. A zero cell in the source table can be either a “sampling

zero” where the sample—by chance—did not contain any observations for a particular

cell. Alternatively, the zero could be a “structural zero” where the cell will be zero

regardless of the sample chosen, typically when a particular combination of categories

is impossibl. For example, the combination of “women aged 0–10” and “women with

one child” would be a structural zero. Lacking any means of distinguishing sampling

zeroes from structural zeroes, the IPF procedure will preserve zeroes from the source

table in the fitted table.

2.2 Population Synthesis Using IPF

Census data is the primary source for agent-based transportation microsimulation mod-

els. Large-sample detailed cross-tabulations of one or two variables across many small

geographic areas are the traditional form of census delivery, and are known as Summary

Files in the U.S., Profile Tables or Basic Summary Tabulations (BSTs) in Canada, and
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Small Area Statistics in the U.K. In addition, a small sample of individual census

records is commonly available. These samples consist of a list of individual persons

(or families or households) drawn from some large geographic area, and are called

Public-Use Microdata Samples (PUMS) or Files (PUMF) in the U.S. and Canada

respectively, or a Sample of Anonymized Records in the U.K. The geographic area

associated with a PUMS is the Public-Use Microdata Area (PUMA) in the U.S., and

the Census Metropolitan Area (CMA) in Canada. In the U.S., each household in the

PUMS is linked to specific individuals in the person PUMS. By contrast, the Cana-

dian census omits these links for privacy reasons, and goes further to prevent overlap

between the different PUMS samples; any person whose information is disclosed in the

person PUMS is guaranteed to be excluded from the household PUMS. The Canadian

census also provides some data aggregated to the household level and other data at

the family level, whereas the U.S. census does not have a distinct family aggregation.

The standard procedures for using IPF in population synthesis with PUMS data

were derived as part of the TRANSIMS project (Beckman et al 1996). Essentially, the

PUMS data is used as the multiway source sample n, Summary Files are used to form

the low-dimensional margins of N and the IPF procedure is used to adjust the source

sample to fit the margins, resulting in a fitted table N̂. The original paper described two

approaches for dealing with geography. In the zone-by-zone approach, one zone is fitted

at a time using the margins of N for that zone alone. This assumes that every zone

shares the correlation structure of the PUMA defined in n. The multizone approach

takes the opposite tack: all zones are fitted simultaneously by adding a new dimension

to the marginal table N for the zone code. The details are a little convoluted, but

Figure 1 provides a succinct explanation.

The IPF process produces a multiway contingency table for the zones, where each

cell contains a real-valued count N̂ijκ of the number of agents with a particular set of

attributes X = i and Y = j in zone Z = κ. However, to define a discrete set of agents

integer counts are required. Deterministic rounding of the counts is not a satisfactory

“integerization” procedure for three reasons: the rounded table may not be the best

solution in terms of discrimination information; the rounded table may not offer as

good a fit to margins as other integerization procedures; and rounding may bias the

estimates, particularly for cells representing “rare” characteristics with a count under

0.5. The original paper handled this problem by treating the fitted table as a joint

probability mass function (PMF), and then used N Monte Carlo draws from this PMF

to select N individual cells (Beckman et al 1996). These draws can be tabulated to

give an integerized approximation N̂′ of N̂. This is an effective way to avoid biasing

problems, but at the expense of introducing a nondeterministic step into the synthesis.

There are several documented applications of the IPF method for population syn-

thesis (Bowman 2004).

2.3 Reweighting and Combinatorial Optimization

The primary alternative to the Iterative Proportional Fitting algorithm is the reweight-

ing approach (Williamson et al 1998), also sometimes known as combinatorial opti-

mization. Williamson et al proposed a zone-by-zone method with a different parame-

terization of the problem: instead of using a contingency table of real-valued counts,

they chose a list representation with one row per PUMS entry, each with an integer
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Fig. 1 An illustration of the multizone fitting procedure (Beckman et al 1996). In the left
half, Z is ignored and the PUMS is adjusted to match the summary tables; they differ because
the PUMS is derived from a smaller sample than the summary tables. In the right half, the
variable Z(k) is added to represent the K zones that make up the PUMA. A constant initial
table filled with ones is used for a second IPF, which is fitted to the summary tables and the
adjusted PUMS. The summary tables now show variation of X by zone Z (and likewise Y ×Z),
while the adjusted PUMS provides information about the association between X and Y .

weight. Within a single zone, they used weights of either zero or one on each PUMS

row, allowing no replication of PUMS observations within a single zone.

To estimate the weights, they used various optimization procedures to find the set

of {0, 1} weights yielding the best fit to the Summary Tables for a single zone. They

considered several different measures of fit, and compared different optimization proce-

dures including hill-climbing, simulated annealing and genetic algorithms. By solving

directly for integer weights, a better fit to the Summary Tables might be obtained than

with IPF methods where Monte Carlo integerization step harms the fit.

The reweighting approach has three primary weaknesses. First, the attribute asso-

ciation observed in the PUMS (nij) is not preserved by the algorithm. The IPF method

has an explicit formula defining the relationship between the fitted table N̂ij and the

PUMS table nij in equation (3). Beckman et al.’s multizone approach also treats the

PUMS association pattern for the entire PUMA as a constraint, and ensures that the

full population matches that association pattern. The reweighting method does op-

erate on the PUMS, and an initial random choice of weights will roughly match the

association pattern of the PUMS. However, the reweighting procedure does not make

any effort to preserve that association pattern.

Secondly, the reweighting method is very computationally expensive. When solving

for a single zone κ, there are n {0, 1} weights, one for each PUMS entry. However, this

gives rise to
(

n
N++κ

)

possible combinations; Williamson et al (1998) called it “incredibly

large.” Of course, the optimization procedures are intelligent enough to explore this
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space selectively and avoid an exhaustive search; nevertheless, Huang and Williamson

(2001) reported a runtime of 33 hours using an 800MHz processor.

Finally, the reweighting method uses n × K weights to represent a K-zone area.

This parameter space is quite large; larger, in fact, than the population itself. It is

not surprising that good fits can be achieved with a large number of parameters, but

the method is not particularly parsimonious and may overfit the Summary Tables. It

is likely that a simpler model with fewer parameters could achieve as good a fit, and

would generalize better from the small (2–5%) PUMS sample to the full population.

3 Sparse List-Based Data Structure

For a microsimulation model spanning many aspects of society and the economy it is

useful to be able to associate a range of attributes with each agent. Different attributes

are useful for different aspects of the agent’s behavior. For a person agent, labor force

activity, occupation, industry and income attributes are useful for understanding his/

her participation in the labor force. Meanwhile, age, marital status, gender and edu-

cation attributes might be useful for predicting demographics.

However, as more attributes are associated with an agent, the number of cells in

the corresponding multiway contingency table grows exponentially. A multiway contin-

gency table representing the association pattern between attributes has I×J×K× . . .

cells. If a new attribute with L categories is added, then L times more cells are needed.

Asymptotically, the storage space is exponential in the number of attributes. As a

result, fitting more than eight attributes with a multizone IPF procedure typically re-

quires more memory than available on a desktop computer. However, the table itself is

cross-classifying a fixed number of observations (i.e., a PUMS), and is extremely sparse

when a large number of attributes are included. Is there a way to exploit this sparsity

and synthesize a large number of attributes?

Sparsity is a familiar problem in numerical methods. Many branches of science

store large sparse 2D matrices using special data structures that hold only the non-

zero sections of the matrix, instead of using a complete array that includes cells for

every zero. The IPF method itself has little impact on the sparsity pattern of a table,

and does not require a complete representation of the table. After the first iteration of

fits to the constraints, the final sparsity pattern is essentially known; some cells may

eventually converge to near-zero values, but few other changes occur.

The benefits of using a sparse data structure are substantial: efficient use of com-

puter memory, flexibility of aggregation and easier linking of data sources (Williamson

et al 1998). In terms of efficiency, the method described here allows the IPF algorithm

to be implemented using storage proportional to the number of non-zero cells in the

initial table. For agent synthesis with the zone-by-zone method, this is proportional to

n (the number of observations in the PUMS) multiplied by d (the number of attributes

to fit). The multizone method combines several IPF stages, and requires considerably

more memory: a similar O(nd) in the first stage, but O(n(d+K)) in the second stage

(expressed in order of magnitude terms using the “Big O” Landau notation commonly

used in computer science).

It is helpful to consider a real example: synthesis of family agents using the 1986

Family PUMS for the Toronto CMA, which contains 9 061 families. (This paper uses

1986 data only because it is the base year for the ILUTE land use/transportation

model; this base year allows model validation over the 1986–2006 simulation period.)
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(a)

Co-ordinates
Index Fstruc Rooms Tenure . . . Nchild Weight

1 Husband-wife 7 Owned . . . 3 81.8
2 Lone female parent 4 Rented . . . 0 70.9
3 Husband-wife 9 Rented . . . 0 54.8
4 Husband-wife 9 Owned . . . 0 86.2

. . . . . . . . . . . . . . . . . . . . .

9 060 Husband-wife 9 Rented . . . 0 64.8
9 061 Husband-wife 6 Rented . . . 0 100.3

(b)

Co-ordinates Weight
Index Fstruc . . . Nchild Zone1 Zone2 . . . Zone731

1 Husband-wife . . . 3 0.000 0.121 . . . 0.021
2 Lone female parent . . . 0 0.000 0.212 . . . 0.020
3 Husband-wife . . . 0 0.000 0.244 . . . 0.143
4 Husband-wife . . . 0 0.002 0.037 . . . 0.019

. . . . . . . . . . . . . . . . . . . . .

9 060 Husband-wife . . . 0 0.000 0.349 . . . 0.011
9 061 Husband-wife . . . 0 0.004 0.213 . . . 0.074

Fig. 2 Format of a sparse list-based data structure for Iterative Proportional Fitting As
shown, each row corresponds to a PUMS entry. The columns give the co-ordinates of each
PUMS entry within the high-dimensional array. Each row also stores (a) a single weight when
synthesizing only attributes present in the PUMS (e.g., an IPF without geography, such as
IPF for a single zone in the zone-by-zone method); or (b) a set of weights, corresponding to
the categories of an attribute absent from the PUMS (e.g., a multizone IPF where the zone
attribute is not present in the PUMS).

For synthesis of 10 attributes using a zone-by-zone method, the complete representation

requires 52.5 MB of storage while a sparse scheme needs only 0.1 MB. When a multizone

method is used for the 731 zones, complete storage would require a prohibitive 38 369

MB while sparse storage needs only 27 MB. For small numbers of attributes, however,

the complete representation is more efficient.

There are many types of data structures that could be used to represent a sparse

high dimensional contingency table. The data structure proposed here is not the

most efficient, but is conceptually simple. It borrows directly from the reweighting/

combinatorial optimization method (Williamson et al 1998): the data is represented as

a list of the PUMS microdata entries, with a weight attached to each. The weight is an

expansion factor, representing the number of times to replicate that record to form a

complete population. While the representation used by the combinatorial optimization

method includes only integer weights and operates on a zone-by-zone basis, the ap-

proach used here behaves exactly like IPF and hence allows fractional weights. With a

small extension, it can also support multiple zones: instead of attaching one weight to

each PUMS entry, K weights are used. An illustration of the data structure is shown

in Figure 2.

Flexible aggregation is a real advantage of a list-based representation (Williamson

et al 1998). Complete array storage is proportional to the number of categories used for

each attributes, while the sparse storage scheme is not affected by the categorization

of the attributes. Many applications of IPF that used complete arrays were forced to

abandon detailed categorization schemes to conserve space and allow more attributes

to be synthesized (see for example Arentze and Timmermans 2005; Auld et al 2009).

This in turn makes it difficult to apply several margins, since different margins may

categorize a single attribute differently. When a large number of categories are possible,
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however, the attribute can be represented with a fine categorization and collapsed on-

the-fly to different coarse categorizations as required during the fitting procedure.

3.1 Algorithmic Details

To implement the IPF algorithm with a sparse list structure, the following operations

are necessary:

– Set the initial weights.

– Convert and collapse list to a table with the dimensions of a target margin. For

example, collapse to N̂i+ in preparation for applying margin Ni+.

– For each cell in the collapsed table, update the list entries that contributed to that

cell. For example, for cell Ni+, the contributing cells are all rows in the list where

X = i.

Since the target population margins remain stored as complete arrays, these op-

erations are relatively straightforward. The collapse operation can be done in a single

pass over the list, using the category numbers in each list row as co-ordinates into the

complete array that stores the collapsed table. The update operation can likewise be

done in a single pass over the list. Both operations are fast with complexity equal to

the storage cost, O(nd).

Setting the initial weights requires a little more work and is slightly counterintuitive.

With a complete array representation, the initial table is set to the PUMS cross-

tabulation for a zone-by-zone synthesis and set to a uniform distribution (1.0 in all

cells) for multizone synthesis. In the sparse representation used here, this changes

slightly since there is one weight per PUMS entry instead of groups of PUMS entries

in each cell. Consequently, the initial row weights need to be set to 1.0 for the zone-

by-zone method. For the multizone method, the sum of the weights in the r rows that

contribute to a single cell in the equivalent complete table needs to add to one, and

the individual weights are therefore 1/r. To allow easy calculation of r, the list needs

to be sorted by the table dimension co-ordinates, grouping the rows that contribute to

a single cell. Thus the initial weights can be set in O(n log n) time.

Additionally, the multizone IPF procedure requires a fit to the distribution of all

non-geographic variables simultaneously. (See the N̂ij+ margin on the right half of

Figure 1.) This margin is high-dimensional—it includes all variables except for the

geographic variable—but is also stored as a sparse list with a single weight per row.

This weight can be treated as a constraint on the total for the weights in each row, and

suitable collapse/update procedures are then easily defined. The computation cost is

still O(n(d+K)) for this type of constraint.

Finally, integerization for this sparse structure is little changed. The list of weights

(or 2D array of weights for multizone) is normalized and treated as a PMF and indi-

vidual entries are synthesized using Monte Carlo draws.

3.2 Discussion

This sparse data structure removes a substantial limitation from the IPF algorithm,

but also raises new questions. Is there a limit to the number of attributes that can be

synthesized? If there is a limit, how is it related to the size n of the PUMS sample?
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The answers to these questions remain elusive. The issue likely hinges on the sta-

tistical validity of high-dimensional contingency tables. These tables are inherently

sparse, with a large fraction of the non-empty cells containing only one observation

and the number of cells is often much larger than the number of observations. In other

words, the sample does not provide a statistically meaningful estimate of the prob-

ability distribution for such a high dimensional table. However, the high-dimensional

table can be collapsed to produce 2D or 3D tables, each of which is adequately sampled

and gives a statistically valid distribution of counts. For example, in an 8-way cross-

classification of a 1986 Toronto census PUMS containing 9 061 families, 99.7% of the

984 150 cells were zero. However, one of the table’s three-way margins had 54 cells and

a median of 30 observations per cell. There are
(

8
3

)

= 56 possible choices of variables to

form a 3-way margin of the 8-way table, and the observations per cell in each margin

is comparable. Consequently, while a sparse 8-way table does not provide statistically

meaningful information about 8-variable interaction, it could be viewed as a means of

linking the many 2- or 3-way tables formed by its margins.

4 Synthesizing Agent Relationships

In this section, the discussion shifts from a single agent type (e.g., family agents) to

the synthesis of multiple agent types simultaneously: for example, person agents and

household agents.

In the U.S. context, the relationship between these types of agents can be observed

directly in the PUMS data. Synthesis of both types of agents typically uses a top-down

approach, where households are created with IPF (fitting only against household-level

attributes) and subsequently the links built into the U.S. PUMS are used to synthesize

the individual persons within the households (Beckman et al 1996; Barrett et al 2003).

The synthesized persons are naturally grouped into plausible households, because the

procedure draws from observed groupings of persons in the PUMS.

By contrast, this approach is impossible in the Canadian census, where the PUMS

for households contains only limited information on the persons within the house-

hold, and no way of linking to the detailed census data on individual persons. While

Canadian data limitations were the original motivation for developing a new method,

other benefits became apparent after the method was developed. For non-Canadian

applications, the method offers two key advantages over the conventional approach to

synthesizing households:

– can achieve a good fit for both household and person attributes simultaneously, at

the level of individual zones;

– produces greater variation in the composition of households. While PUMS house-

holds are replicated as in the conventional approach, each replicate of a PUMS

household typically contains a different set of person agents.

Several previous papers have attempted to deal with the issue of fitting against

both household and person attributes. Guo and Bhat (2007) built on the conventional

approach, retaining the U.S. census’ linkage between households and persons, but mod-

ifying the Monte Carlo synthesis stage to attempt a fit at both the household level and

the person level simultaneously. Only a few person-level attributes were incorporated:

gender and age. The constraints were somewhat loose and ad hoc, since the procedure
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attempted to satisfy competing goals when trying to achieve a good fit at both the

household and person levels.

Ye et al (2009) tackled the same problem of person-level attributes. They applied

IPF twice independently, first on the household level and second on the person level,

obtaining two separate sets of weights. A heuristic procedure was then used to solve

for household-level weights that could simultaneously satisfy both IPF-derived sets

of weights. The method showed good results in a case study with three attributes at

both the household and person levels, but the authors acknowledged that both the total

number of attributes and the number of categories per attribute play an important role

in the performance of the algorithm. It is likely that the method would have difficulty

with the large number of attributes and categories contemplated in this paper.

Arentze and Timmermans (2005) only synthesized for the top-level agent, the house-

hold. Their synthesis included the age and labor force activity of both husband and

wife, and the number of children in the household. They did not connect this to a

separate synthesis of persons with detailed individual attributes, but by synthesizing

at an aggregate level they guaranteed that the population was consistent and satisfied

key constraints between family members, in the same manner as Beckman et al (1996).

Guan (2002) used a bottom-up approach to build families using the Canadian cen-

sus. The person agents were synthesized first, and then assembled to form families.

Children were grouped together (and constrained to have similar ages), then attached

to parents. Constraints between parent/child ages and husband/wife ages were in-

cluded, although there are some drawbacks to the method used for enforcement. Guan

likewise used a bottom-up approach to combine families and non-family persons into

households.

4.1 Grouping persons

Any method for synthesizing relationships between persons must produce credible

groupings of persons (into families and/or households). Suppose that a population

of person agents has been synthesized, with a limited amount of information about

their relationships in families (such as an attribute Fstruc, which classifies a person

as married, a lone parent, a child living with parent(s), or a non-family person). In the

absence of any information about how families form, the persons could be formed into

families in a näıve manner: randomly select male married persons and attach them

to female married persons, and randomly attach children to couples or lone parents.

Immediately, problems would emerge: some persons would be associated in implausi-

ble manners, such as marriages with age differences over 50 years, marriages between

persons living at opposite ends of the city, or parents who are younger than their

children.

A well-designed relationship synthesis procedure should carefully avoid such prob-

lems. A good choice of relationships satisfies certain constraints between agents’ at-

tributes, such as the mother being older than her child, or the married couple living in

the same zone. It also follows known probability distributions, so that marriages with

age differences over 50 years have a low but non-zero incidence.

Most constraints and probability distributions are observed in microdata samples

of aggregate agents such as families or households. A complete Family PUMS in the

Canadian census includes the ages of mothers and children, and none of the records

includes a mother who is younger than her children. Similarly, only a small fraction
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of the records include marriages between couples with ages differing by more than 50

years. The question, however, is one of method: how can relationships between agents

be formed to ensure that the desired constraints are satisfied?

As Guo and Bhat (2007), Ye et al (2009) and Guan (2002) found, working at the

household/family and person levels simultaneously can introduce conflicts between

the competing goals of achieving good fit at both levels. The family population may

contain 50 husband-wife families in zone k where the husband has age i, while the

person population contains only 46 married males of age i in zone k. In the face of such

inconsistencies, either families or persons must be changed: a family could be attached

to a male of age i′ 6= i, or a person could be modified to fit the family. In both cases,

either the family or person population is deemed “incorrect” and modified. The editing

procedures are difficult to perform, and inherently ad hoc. Furthermore, as the number

of overlapping attributes between the two populations grows, inconsistencies become

quite prevalent.

What are the sources of these inconsistencies? They come from two places: first, the

fitting procedure used to estimate the population distribution N̂P for persons and N̂F

for families may not give the same totals for a given set of common attributes. Second,

even if N̂P and N̂F could be made to agree on all shared attributes, the populations

produced by independent Monte Carlo synthesis on the two tables (used by Guan)

may not agree, since the Monte Carlo procedure is non-deterministic. In the following

sections, a method is proposed to resolve these two issues.

4.2 Fitting Populations Together

For the purposes of discussion, consider a simple synthesis example: synthesizing hus-

band-wife families. Suppose that the universe of persons includes all persons, with at-

tributes for gender Sexp(g), family status Fstruc(h), age Agep(i), education Edup(j)

and zone Zone(k). The universe of families includes only husband-wife couples, with

attributes for the age of husband Agem(im) and wife Agef(if ), and zone Zone(k).

IPF has already been used to estimate the contingency table cross-classifying persons

(N̂P
ghijk) and likewise for the table of families (N̂F

imifk
). The shared attributes between

the two populations are age and zone, and implicitly gender. The two universes do not

overlap directly, since only a fraction of the persons belong to husband-wife families;

the others may be lone parents, children, or non-family persons, and are categorized

as such using the Fstruc attribute.

In order for consistency between N̂P and N̂F , the following must be met for h =

husband-wife and any choice of i, k:

N̂P
ghi+k =

{

N̂F
i+k for g=male

N̂F
+ik for g=female

(4)

That is, the number of married males of age i in zone k must be the same as the

number of husband-wife families with husband of age i in zone k. While this might

appear simple, it is often not possible with the available data. A margin NP
g+i+k

giving the Sexp × Agep × Zone distribution is probably available to apply to the

person population. However, a similar margin for just married males is not likely to

exist for the family population; instead, the age breakdown for married males in the

family usually comes from the PUMS alone. As a result, equation (4) is not satisfied.
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One suggestion immediately leaps to mind: if the person population is fitted with

IPF first and N̂P is known, the slice of N̂P
ghi+k where g = male and h = husband-wife

could be applied as a margin to the family fitting procedure, and likewise for g =

female. This is entirely feasible, and does indeed guarantee matching totals between

the populations. The approach can be used for the full set of attributes shared between

the individual and family populations. There is one downside, however: it can only be

performed in one direction. The family table can be fitted to the person table or vice

versa, but they cannot be fitted simultaneously.

Finally, there remains one wrinkle: it is possible that the family population will still

not be able to fit the total margin from the individual population, due to a different

sparsity pattern. For example, if the family PUMS includes no families where the

male is 15–19 years old but the individual PUMS does include a married male of that

age, then the fit cannot be achieved. This is rarely an issue when a small number of

attributes are shared, but when a large number of attributes are shared between the

two populations it is readily observed. The simplest solution is to minimize the number

of shared attributes, or to use a coarse categorization for the purposes of linking the

two sets of attributes.

Alternatively, the two PUMS could be cross-classified using the shared attributes

and forced to agree. For example, for g = male and h = husband-wife, then the pattern

of zeros in nP
ghi++ and nF

i++ could be forced to agree by setting cells to zero in one

or both tables. (In the earlier example, this would remove the married male of age 15–

19 from the Person PUMS.) The person population is then fitted using this modified

PUMS, and the family population is then fitted to the margin of the person population.

4.3 Conditioned Monte Carlo

The second problem with IPF-based synthesis stems from the independent Monte Carlo

draws used to synthesize persons and families. For example, suppose that mutually

fitted tables N̂P and N̂F are used with Monte Carlo to produce a complete population

of persons and families N̂′
P

and N̂′
F
. If it can be guaranteed for g = male and

h = husband-wife that

N̂′
P
ghi+k = N̂′

F
i+k (5)

(and likewise for g = female), then a perfectly consistent set of connections between

persons and families is possible. How can equation (5) be satisfied?

A simplistic solution would be a stratified sampling scheme: for each combination

of i and k, select a number of individuals to synthesize and make exactly that many

draws from the subtables N̂P
++i+k and N̂F

i+k. This approach breaks down when the

number of strata grows large, as it inevitably does when more than one attribute is

shared between persons and families.

The problem becomes clearer once the reason for mismatches is recognized. Suppose

a Monte Carlo draw selects a family with husband age i in zone k. This random draw is

not synchronized with the draws from the person population, requiring a person of age i

in zone k to be drawn; the two draws are independent. Instead, synchronization could

be achieved by conditioning the person population draws on the family population

draws. Instead of selecting a random value from the joint distribution

P (Sexp,Fstruc,Agep,Edup,Zone)
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of the person population, a draw from the conditional distribution

P (Edup |Sexp = male,Fstruc = husband-wife,Agep = i,Zone = k)

could be used, and a similar draw for the wife. Converting the joint distribution gen-

erated by IPF to a conditional distribution is an extremely easy operation.

This reversal of the problem guarantees that equation (5) is satisfied, and allows

consistent relationships to be built between agents. While it has been described here

in a top-down manner (from family to person), it can be applied in either direction.

4.4 Discussion

As demonstrated, it is possible to synthesize persons and relate them together to form

families, while still guaranteeing that the resulting populations of persons and families

approximately satisfy the fitted tables N̂P and N̂F . By carefully choosing a set of

shared attributes between the person and family agents and using conditional synthesis,

a limited number of constraints can be applied to the relationship formation process.

In the example discussed earlier, the ages of husband/wife were constrained; in a more

realistic example, the labor force activity of husband/wife, the number of children

and the ages of children might also be constrained. Furthermore, multiple levels of

agent aggregation could be defined: families and persons could be further grouped into

households and attached to dwelling units.

The synthesis order for the different levels of aggregation can be varied as required,

using either a top-down or bottom-up approach. However, the method is still limited in

the types of relationships it can synthesize: it can only represent nesting relationships.

Each individual person can only belong to one family, which belongs to one household.

Other types of relationships cannot be synthesized using this method, such as a person’s

membership in another group (e.g., a job with an employer).

While this method is clearly useful for Canadian data that lacks links between

the household and person level, is it useful in other contexts? The answer depends on

whether the benefits (simultaneous attribute fitting at the household and person level,

and greater variation in household composition) outweigh the costs (implementation

difficulty, and the synthetic nature of the household/person relationships).

5 Fitting to Randomly Rounded Margins

Many census agencies apply random rounding procedures to published tables, including

the agencies in Canada, the United Kingdom and New Zealand. Each agency has a base

b that it uses, and then modifies a cell count Ni+ by rounded up to the nearest multiple

of b with a probability p, or down with a probability 1 − p. In most applications, a

procedure called unbiased random rounding is used, where p = (Ni+ mod b)/b. The

alternative is called unrestricted random rounding, where p is constant and independent

of the cell values; for example, with p = 0.5 it is equally likely that a cell will be rounded

up or down.

For example, cells and marginal totals in Canadian census tables are randomly

rounded up or down to a multiple of b = 5 using the unbiased procedure. For a cell with

a count of Ni+ = 34, there is a 20% probability that it is published as Ñi+ = 30 and an

80% probability that it is published as Ñi+ = 35. Most importantly, the expected value
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is equal to that of the unrounded count; it is therefore an unbiased random rounding

procedure.

This can lead to conflicts between tables (Huang and Williamson 2001): two differ-

ent cross-tabulations of the same variable or set of variables may be randomly rounded

to different values (for example, the X margin of the X × Y and X × Z tables). The

standard IPF procedure will not converge in this situation. The procedure is also un-

able to take into account the fact that margins do not need to be fitted exactly, since

there is a reasonable chance that the correct count is within ±4 of the reported count.

Two approaches were used in this work to deal with random rounding in the Cana-

dian census data: a modification to the IPF termination criterion, and the use of

hierarchical marginal tables.

5.1 Hierarchical Margins

For each cross-tabulation, statistical agencies publish a hierarchy of margins, and these

margins are rounded independently of the cells in the table. For a three-way table Nijk

randomly rounded to give Ñijk, the data release will also include randomly rounded

two-way margins Ñij+, Ñi+k and Ñ+jk, one-way margins Ñi++, Ñ+j+ and Ñ++k,

and a zero-way total Ñ+++. The sum of the cells does not necessarily match the

marginal total. For example, the sum
∑

k Ñijk includes K randomly rounded counts.

The expected value of this sum is the true count Nij+, but the variance is large and the

sum could be off by as much as K(b− 1) in the worst case. By contrast, the reported

marginal total Ñij+ also has the correct expected value, but its error is at most b− 1.

For this reason, it seems sensible to include the hierarchical margins in the fitting

procedure, in addition to the detailed cross-tabulation itself.

6 Evaluation

It is challenging to evaluate the results of a data synthesis procedure. If any form of

complete “ground truth” were known, the synthetic population could be tested for

goodness-of-fit against the true population’s characteristics; instead only partial views

of truth are available in smaller, four-way tables.

In theory, IPF-based procedures have many of the qualities necessary for a good

synthesis: an exact fit to their margins, while minimizing the changes to the PUMS

(using the discrimination information criterion). This does not mean that the full syn-

thesis procedure is ideal: the fit will almost certainly be poorer after Monte Carlo

(or conditional Monte Carlo). Furthermore, it still leaves a major question open: how

much data is sufficient for a “good” synthesis? Are the PUMS and multidimensional

margins both necessary, or could a good population be constructed with one of these

two types of data? Does the multizone method offer a significant improvement over the

zone-by-zone approach?

To investigate these questions, a series of experiments was conducted. The source

data was from the 1986 census for the Toronto CMA, which is a single PUMA in

the Canadian system. The synthetic population is a set of person agents with eight

attributes each, described in Pritchard (2008). In the absence of ground truth, the

synthetic population is evaluated in terms of its goodness-of-fit to a large collection



15

of low-dimensional contingency tables. These validation tables are divided into the

following groups:

1. One-dimensional margins for the entire PUMA, for each attribute.

2. One-dimensional margins by zone for each attribute.

3. Higher-dimensional Summary Tables for the entire PUMA.

4. Higher-dimensional Summary Tables by zone.

5. Higher-dimensional margins from PUMS that are unavailable in summary tables.

A selection of 2D and 3D margins are taken from the PUMS after fitting each to

the 1–3D margins in the Summary Tables.

After cross-classifying the synthetic population to form one table N̂ijk, it can be

compared to a validation table Nijk using a goodness-of-fit statistic. While there are

sound theoretical reasons to prefer information-based statistics like Minimum Discrim-

ination Information (equivalent to the G2 statistic in log-linear models), distance-based

metrics are more common in the literature. The Standardized Root Mean Square Error

(SRMSE) statistic was chosen as a good distance-based metric for measuring matrix

goodness-of-fit (Knudsen and Fotheringham 1986). Its formula is given by

SRMSE =

√

1

IJK

∑

i,j,k

(N̂ijk −Nijk)
2

1

IJK

∑

i,j,k

Nijk

(6)

Like any distance-based statistic, a value of zero indicates a perfect fit. The RMS

statistic (numerator) is standardized by the average cell value (denominator), in order

for the statistic to be comparable for tables of different sizes. The upper limit of the

SRMSE statistic is variable but is often assumed to be 1.0 (Knudsen and Fotheringham

1986).

This statistic is calculated for each of the validation tables in turn and the goodness-

of-fit statistics in each group are then averaged together to give an overall goodness-

of-fit for the group.

6.1 Tests of IPF Method and Input Margins

In the first series of experiments, the IPF procedure is tested with different inputs to

see how the quality of fit is affected. Three questions are tested simultaneously using a

set of ten fits, labeled I1 through I10. The input data included in each experiment are

shown together with the output goodness-of-fit in Table 1. I6 represents a “typical”

application of IPF for population synthesis: a zone-by-zone approach using 1D margins.

– Source Sample: How does the initial table in IPF affect the result? Can a good fit be

obtained with a constant initial table (I1, I3, I5, I7), or is the PUMS necessary (I2,

I4, I6, I8)? The results show an order of magnitude better fit with the PUMS. Note

however the results for I6 in validation group 4: there are geographic variations

in the 2–3D association pattern that are not explained by the combination of the

PUMS and 1D margins with geography.
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– 1D Margins: Are 1D margins sufficient (I1, I2, I5, I6, I9), or does a better fit result

when 2D and 3D margins are applied (I3, I4, I7, I8, I10)? While the information in

validation group 3 can be captured fairly well by the PUMS (albeit with a smaller

sample size), the real benefit of 2D and 3D margins shows up in validation group 4,

where a good fit is only achieved in I7, I8 and I10.

– Geography: What is the difference between the zone-by-zone (I5–I8) and multi-

zone approach (I9–I10) to geographic variation? (The geography-free approach is

provided for contrast in I1–I4.) As reported by others (Beckman et al 1996), the

difference in fit is not large. The main difference can be seen in validation group 5:

the multizone approach treats the PUMS as a constraint with equal importance to

the marginal constraints, and achieves a better fit against 2D and 3D attributes

that are not covered by the marginal tables. While the results are clearly better for

the multizone approach, it does require additional computational resources.

6.2 Effects of Monte Carlo

The second series of experiments tests the effects of both the conventional Monte Carlo

integerization procedure and the conditional Monte Carlo for relationships.

Table 1 Effects of Input Data and Conditioned Monte Carlo on Synthesis.
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Margins grouped and averaged
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I1 ✓ 1 none 1 285 192 566 883
I2 ✓ PUMS none 0 285 15 522 38
I3 ✓ ✓ 1 none 1 285 2 522 735
I4 ✓ ✓ PUMS none 1 285 2 522 6
I5 ✓ 1 one 4 2 187 252 849
I6 ✓ PUMS one 1 3 19 130 73
I7 ✓ ✓ 1 one 2 2 7 3 659
I8 ✓ ✓ PUMS one 1 1 3 3 56
I9 ✓ ✓ ✓a 1 multi 0 3 15 131 38
I10 ✓ ✓ ✓ ✓ ✓b 1 multi 0 1 0 3 0

M0 ✓ ✓ ✓ ✓ ✓b 1 multi 0 1 0 3 0
M1 ✓ ✓ ✓ ✓ ✓b 1 multi ✓ 3 39 3 80 12
M2 ✓ ✓ ✓ ✓ ✓b 1 multi ✓ 8 58 7 99 21

a PUMS fitted to 1D margins b PUMS fitted to 2–3D margins
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Table 2 Input margins applied to household, person and family levels during population
synthesis (in addition to the all-way interaction derived from the PUMS, excluding zone). The
final population achieves a good fit to all tables simultaneously.

Household

Zone×Dwelling type× Tenure
Zone×Dwelling type×Num. persons
Zone×Dwelling type×Dwelling age
Zone×Dwelling type×Num. rooms
Zone×Dwelling payments×Num. families× Tenure
Zone×Num. families×Num. persons

Family

Zone× Family structure×Num. children
Zone×Num. children aged 0–5 × 6–14 × 15–17 × 18–24 × 25+
Zone×Num. children aged 0–5 × 6+× Labor activity (female)

Person

Zone× Sex× Income
Zone× Sex×Age× Family status
Zone× Sex×Age× Labor activity
Zone× Sex×Age× Education
Zone× Sex× Education× Labor activity
Zone× Sex×Occupation

The design and results of these experiments are also in Table 1 under labels M0–

M2. Because the Monte Carlo procedure is non-deterministic, the reported SRMSE is

an average over 30 trials. The first experiment M0 is the null case: IPF before Monte

Carlo. Experiment M1 shows the conventional Monte Carlo procedure, where a set

of persons are synthesized directly from the IPF-fitted table for persons. Experiment

M2 is a top-down conditioned Monte Carlo procedure, where households/dwellings are

synthesized by Monte Carlo, families are conditionally synthesized on dwellings, and

persons are conditionally synthesized on families. The results are evaluated on the

person population only, to focus on the effects of the two stages of conditioning prior

to generating the persons. The dwellings had ten attributes each, families had fifteen

attributes (one shared with both dwellings and persons, four shared only with dwellings

and two shared only with persons). The full set of input margins used are shown in

Table 2. An overview of the M2 population synthesis procedure is shown in Figure 3.

The numbered steps shown in the figure are (with compute times as indicated):

1. a. Fit households/dwellings using PUMS and Summary Tables with the multizone

IPF procedure (30.4 minutes).

b. Fit persons using PUMS and Summary Tables (58.9 minutes).

2. Fit families using PUMS and Summary Tables; also fit to distributions of attributes

shared with households/dwellings and persons (10.3 minutes).

3. Use Monte Carlo to synthesize a list of households/dwellings (0.9 minutes).

4. For each household/dwelling with one or more families, synthesize family/families

conditioned on household/dwelling characteristics (3.6 minutes).

5. a. For each family, synthesize persons conditioned on family characteristics (10.9

minutes).

b. For each household/dwelling, synthesize non-family persons conditioned on

household/dwelling characteristics (3.2 minutes).
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Fig. 3 Overview of synthesis procedure. Numbers show the order of steps in the process. On
the left, PUMS and Summary Table data are combined using a fitting procedure (Beckman et
al.’s multizone IPF). On the right, Monte Carlo is used to synthesize a list of individual agents
from the fitted tables, with conditioning included for families and persons.

As expected, the goodness-of-fit deteriorates after applying Monte Carlo, and de-

teriorates further using the conditional procedure. The deterioration from M0 to M1

is somewhat larger than the deterioration from M1 to M2. In essence, this shows that

the conditional synthesis procedure employed here does not have a major impact on

the goodness-of-fit. Even after two stages of conditioning (from dwellings to families

to persons), a reasonable goodness-of-fit is maintained.

6.3 Implementation

The IPF routines were implemented using special-purpose software on the R statistical

computing platform (Ihaka and Gentleman 1996) with a few routines in C. The total

compute time for experiment M2 was two hours and seven minutes, running on an

older 1.5 GHz computer with 2 GB of memory.

The data used for the experiments was the 1986 census of the Toronto Census

Metropolitan Area (CMA). The census summary tables provide information about

individual attributes in 731 census tracts (CTs) within the CMA, most of which are

shown in Table 2. The associated PUMS datasets correspond to the entire CMA, and

consist of:

– a 1% sample of 1 120 000 households and dwellings, with 10 of the available at-

tributes used for each agent;

– a 1% sample of 906 385 families, with 15 attributes each;



19

– a 2% sample of 3 427 000 persons, with 8 attributes each.

The final synthesized population sizes are 100% of the populations above.

7 Conclusion

Two additions to the existing procedure for population synthesis have been proposed

in this paper. The sparse storage technique yields clear advantages in memory usage

for large numbers of attributes, while retaining all of the theoretical advantages of

an IPF-based procedure. The conditional Monte Carlo synthesis procedure allows a

simultaneous fit to household, family and person level data and permits a valid synthesis

of relationships between agents for non-U.S. census data. The evaluation demonstrates

that this conditional procedure has only a minor impact on goodness-of-fit relative to

the conventional Monte Carlo approach.
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