
Construction of Voronoi Diagrams

David Pritchard

April 9, 2002

1 Introduction

Voronoi diagrams have been extensively studied in
a number of domains. Recent advances in graph-
ics hardware have made construction of these dia-
grams relatively cheap, for a limited set of appli-
cations. In this paper, we discuss the implementa-
tion of two Voronoi diagram construction algorithms.
The first uses an algorithm introduced in [HKL+99],
which finds a Voronoi diagram using standard poly-
gon rasterization hardware. The second algorithm is
the classic O(n log n) sweepline approach introduced
by Fortune. We restrict the problem to only consider
point sites, not arbitrary line or polygonal sites. The
goal is to compare construction times and implemen-
tation issues for these two techniques.

2 Hoff’s Algorithm

Implementation of the hardware-accelerated algo-
rithm from [HKL+99] proved quite straightforward.
The approach is every bit as simple as the paper de-
scribes, and required only about two hours to imple-
ment. The algorithm was written in C++ using the
OpenGL graphics library, and runs on Linux-based
PCs. The core algorithm required 300 lines of code.

As described in the paper, the graphics hardware
is set up with an orthographic projection where the
viewer is at z = −∞ looking in the positive z direc-
tion. Each site is rendered as a right cone, with the
tip positioned in the z = 0 plane, and the circular
base in the z = 1 plane. Each cone is shaded uni-
formly with a unique colour. The graphics hardware
uses a depth buffer to determine which cone is clos-
est to the viewer at each pixel, leaving a discretized

Figure 1: An example of the mosaic effect.

representation of the Voronoi diagram in the frame-
buffer. For a more complete description of this inter-
pretation of the Voronoi diagram, refer to [GS87].

From there, it is easy to perform point-in-site tests,
which can be done in O(1) time, although typical
graphics hardware often has a high cost associated
with framebuffer readback. Other operations which
are amenable to solution with graphics hardware can
also be done with reasonable efficiency—for example,
the mosaic technique described by [HKL+99]. An
example of this is shown in Figure 1.

For some applications of Voronoi diagrams, how-
ever, this discrete representation is clearly unsuit-
able. For example, if site connectivity information
is needed, then the discrete plot must be scanned
using image analysis techniques to obtain a conven-
tional planar subdivision data structure. The time
required for such an operation is much larger than
the construction of the discrete diagram. It would be

1



interesting to see how such an approach would com-
pare to a pure software algorithm, but this is beyond
the scope of this project.

As observed by [HKL+99], graphics fillrate is usu-
ally the bottleneck in the performance of this algo-
rithm. In situations where an upper bound on the
distance between points is known, the radius of the
cone base can be reduced, which consequently re-
duces the number of pixels that the graphics card
must fill for each site. For example, if the sites are
chosen from a uniform random distribution, then the
maximum distance between points is likely to be rea-
sonably small, saving substantial time. From my ob-
servations, this is the single largest parameter affect-
ing the algorithm’s speed. For a nonuniform ran-
dom distribution of points, it could be valuable to
adjust the cone size according to the probability den-
sity function.

3 Fortune’s Algorithm

The software implementation of the Voronoi diagram
proved much more challenging than anticipated. The
algorithm follows the procedure given in [dBvKOS00]
chapter 7, which provides a high-level overview of the
necessary work. Implementation was done in C++
on a Linux-based PC. Approximately fifty hours were
spent implementing and debugging the software im-
plementation. The code directly related to the For-
tune’s algorithm totalled 1600 lines.

3.1 Data Structures

The C++ Standard Template Library provides a
number of standard containers for structures such as
linked lists, arrays, sorted lists and heaps. It also
provides a few tree structures targeted at specific ap-
plications, such as the set and associative array struc-
tures. Some of these could be adapted for use in this
project, but many new data structure classes needed
to be written to accomodate my needs. The pla-
nar subdivision representing the Voronoi digram was
stored in a doubly-connected edge list, as described in
[dBvKOS00] chapter 2. In a postprocessing step, the
infinite edges of the Voronoi diagram were truncated

using a surrounding box.
The beach line was stored in a binary tree, as de-

scribed by [dBvKOS00]. Since both internal nodes
and leaves need to hold data, the STL map struc-
ture (built upon a red-black tree) was not a feasible
choice. Instead, a new binary tree structure had to
be written from scratch. At present, this has not yet
been move over to a balanced binary tree format, so
the algorithm runs in O(n2) time, and not the desired
O(n log n) time.

The priority queue must be stored in a data struc-
ture allowing efficient extraction of the minimum, but
also efficient insertion and deletion. The STL set
structure was chosen for this, since it supports the
necessary operations in O(log n) time.

3.2 Numerical Methods

A few numerical routines were also needed by the al-
gorithm. Circle events require the determination of
the position and size of the circle containing three
points. This fit operation was performed by taking
the intersection of two bisectors, which proved ade-
quate for the needs of the algorithm.

Calculation of the breakpoint between arcs re-
quired a quadratic root solver. This is not difficult in
principle, but numeric stability proved a little more
involved than anticipated.

3.3 Breakpoint Convergence

The algorithm presented by [dBvKOS00] is straight-
forward, except for a few steps. The authors gloss
over the details of detecting whether or not two
breakpoints converge. For any triple of sites, there
are many different ways in which a circle event could
potentially be added to the event queue. For exam-
ple, suppose that the leaves of the beach front are
< a, b, c, b, a > after site c is inserted. Then, two dif-
ferent triples involving the same three sites are con-
sidered for insertion into the event queue: < a, b, c >
and < c, b, a >. If both are inserted, then both may
later be extracted from the queue and a duplicate
vertex could be inserted into the planar subdivision,
causing a breakdown in the algorithm.

2



In fact, one triple corresponds to the converging
breakpoints, and the other triple corresponds to di-
verging breakpoints. This convergence must be de-
tected at insertion time, so that diverging break-
points are rejected. Several different approaches were
attempted to detect convergence.

• Comparing breakpoint positions at the current
sweepline and a lower sweepline position. Specif-
ically, a sweepline at the circle base was used.
However, in situations where the middle site of
a triple is at the base of the circle, this approach
failed. It also seemed to have numerical prob-
lems.

• Testing breakpoint and circle positions relative
to the sites’ positions. This approach took ad-
vantage of the fact that a converging breakpoint
will lie either to the right or the left of both of
its sites, and will be on the same side of the sites
as the circle centre. This also fails in situations
where the middle site of a triple is at the base
of the circle. It seemed to have other sporadic
problems as well.

• Testing order of sites. For a triple < a, b, c >,
test the two breakpoints < a, b > and < b, c >.
For < a, b >, if site a is lower than site b, then
the circle centre should lie to the right of a; if b is
lower than a, then the circle centre should lie to
the left of b. If this test fails, then the breakpoint
is divergent. This approach proved the most ro-
bust, but has difficulty with the degenerate situ-
ation where the sites are on a common horizontal
line.

The final solution chosen is still not perfect. For
many larger diagrams with more than 50 sites, the
approach breaks down. It is not clear if the problem
is numerical or algorithmic.

For more information, [GS87] was consulted, but
did not provide any further details. Fortune’s original
implementation might prove useful for resolving this
problem.

3.4 Planar Subdivision Construction

When a circle event occurs, two edges must be joined,
and a third edge constructed. However, there are two
different ways in which the edges could be connected,
and it was not clear how to choose between the two
types. Again, several attempts were made before ar-
riving at an acceptable solution.

• Constructing a line from the middle site to the
left site, and testing to see which side of the line
the circle centre lies on. This approach proved
incorrect.

• Similar construction, but testing with the right
site instead of the circle centre. This also proved
incorrect.

• Testing breakpoint movement direction with a
descending sweepline: either away from or to-
wards the circle centre. The breakpoint move-
ment corresponds to the opposite of the edge’s
orientation. This technique is correct, but it is
numerically problematic to find two locations on
the line swept out by the breakpoint, especially
when a site is at the bottom of the circle.

• Examining order of sites in angular sweep about
circle centre, starting at middle site. If left site is
found first, choose one configuration; if right site
is found first, choose the other. This is correct
and appears numerically sound.

The final choice of approach appears to work quite
successfully. With large numbers of sites, there are
sometimes topological errors in the current imple-
mentation, but this may be a problem with the break-
point convergence test.

3.5 Degeneracies

The algorithm fails in many degenerate situations.
Surprisingly, without substantial effort, it can handle
many degeneracies, including some situations where
the highest two sites are on the same horizontal line,
and the case where three sites are collinear. How-
ever, many degeneracies cause still result in program
failure.

3



3.6 Final results

To test robustness, the program was fed a set of sites,
each of which oscillated back and forth between two
nearby positions at different rates. The program still
fails in a large fraction of such tests, due to remaining
degeneracy bugs, and problems in the convergence
test. For static site collections, the program works
quite reliably for small data sets, but bugs in the
convergence test make it less reliable as the number
of input sites grows. Given more time, these issues
could be resolved.

4 Comparison

Comparing the overall performance of the two ap-
proaches is difficult. The hardware algorithm can ob-
viously perform closest-site queries in O(1) time, but
would take a substantial hit for many other types
of queries. The software algorithm, on the other
hand, may need a relatively long O(n) time to per-
form closest-site queries, but it can provide rich infor-
mation about neighbouring sites. Furthermore, the
software Voronoi algorithm could be combined with
a planar subdivision search data structure to provide
O(log n) query time for closest-site queries.

A comparison of queries using either of these two
approaches is like comparing apples and oranges.
However, there is some value in comparing construc-
tion times using each approach. This can at least
show a lower-bound on the cost of either approach.
For certain applications, particularly those running
at interactive rates, construction time is the bottle-
neck, since relatively few queries are performed.

The comparison is a little biased, since the soft-
ware implementation did not incorporate a balanced
binary tree. Consequently, the software implemen-
tation runs in O(n2) time instead of the desired
O(n log n) time. However, we can get an optimistic
estimate of the speed using a balanced tree by divid-
ing the actual time by logn. This estimate is included
in the results table as the Software’ column.

The hardware implementation was set to a 512 ×
512 grid with a maximum error of half a pixel and the
largest cones possible, making no assumptions about

Sites Hardware Software Software’
10 4.3 ms 2.7 ms 1.2 ms
10 4.3 ms 2.7 ms 1.2 ms
25 9.9 ms 10.8 ms 3.4 ms
25 9.9 ms 12.6 ms 3.9 ms
50 19.1 ms 35.1 ms 9.0 ms
50 19.2 ms 36.5 ms 9.3 ms
75 28.5 ms 67.4 ms 15.6 ms
75 28.6 ms 59.7 ms 13.8 ms

Table 1: Comparison of hardware and software imple-
mentations, and an optimistic estimate of the speed
of the software implementation using a balanced bi-
nary tree.

the input data. Since the software implementation
only works correctly for a selected set of inputs, eight
sets of working input sites were chosen and given to
each implementation. Since the operation of the al-
gorithm is fairly fast, testing was done with 100 repe-
titions of the data, then normalised to determine the
average speed of each repetition.

The tests were run on a fast new machine, a Pen-
tium 4 1.6 GHz processor with a GeForce3 graph-
ics card. Results are shown in Table 1. For com-
parison, on an older AMD K6-2 300 MHz computer
with a Matrox G400 graphics card, software speed
was about 15 times slower and hardware speed was
about 4 times slower.

Note that this is a pessimistic conclusion for the
hardware algorithm, since the cone sizes are pes-
simistically large. As noted earlier, a substantial
speedup can be achieved by assuming uniform ran-
dom distribution of sites and reducing the cone size.
By using half the cone size, which is still pessimistic,
speedups of about 35% were recorded. Likewise, by
using a grid size of 256×256, speedups of 140% were
recorded.

It is interesting to observe that the software algo-
rithm is comparable to the hardware algorithm for
up to 25 sites. Once the algorithm is modified to use
a balanced binary tree, it may even be comparable
in speed for up to 100 sites. For small numbers of
sites, the software algorithm is faster. Clearly, as the
number of sites rises, the hardware algorithm will be

4



able to construct its representation of the Voronoi
diagram faster, since it operators in O(n) time while
Fortune’s algorithm is O(n log n).

In terms of accuracy, Hoff’s algorithm has a maxi-
mum error of 2−9 in the location of the Voronoi ver-
tices by the choice of rendering resolution. The ex-
act error of Fortune’s algorithm is harder to quantify,
but is at least as good as Hoff’s using single-precision
floating point. A comparison of the output of the two
algorithms confirmed this error analysis.

5 Conclusions

Using current hardware, Fortune’s algorithm can out-
perform the Hoff’s discrete Voronoi diagram for situ-
ations where there are less than 25 sites. In situations
where the number of sites is low and speed is critical,
Fortune’s algorithm is the best choice. However, this
comes at substantial implementation cost: at least
5 times as much code, and much more programmer
effort. For situations where speed is not critical or
where a large number of sites are needed, Hoff’s al-
gorithm may be preferable.

References

[dBvKOS00] Mark de Berg, Marc van Kreveld, Mark
Overmars, and Otfried Schwarzkopf.
Computational Geometry: Algorithms
and Applications. Springer-Verlag,
2000.

[GS87] Leonidas J. Guibas and Jorge Stolfi.
Ruler, compass and computer: The de-
sign and analysis of geometric algo-
rithms. In Proc. the NATO Advanced
Science Institute, series F, vol. 40:
Theoretical Foundations of Computer
Graphics and CAD, pages 111–165,
Lucca (Italy), July 1987. Springer-
Verlag. Invited paper.

[HKL+99] Kenneth E. Hoff III, John Keyser, Ming
Lin, Dinesh Manocha, and Tim Cul-
ver. Fast computation of generalized

Voronoi diagrams using graphics hard-
ware. Computer Graphics, 33(Annual
Conference Series):277–286, 1999.

5


