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Abstract

In this paper, I present a method for acquiring and mea-
suring the shape and deformation of a rectangular sheet of
cloth. Stereo images and a correspondence algorithm are
used to acquire a depth map of the cloth. The cloth has a
grid printed on it, and points on this grid are detected to
measure deformation. The technique presented here could
be used to recover video sequences of moving cloth, or to
measure the material properties of a sheet of cloth.

1 Introduction

Techniques for cloth simulation have advanced greatly
over the past few years. Faster simulation algorithms [1],
resolution of friction and collision detection [4], and meth-
ods of dealing with wrinkles and buckling [5] have ad-
vanced the state of the art.

To date, however, there have been few efforts to measure
the movement of real cloth. Such measurements could be
used to infer parameters for a specific material type, or to
verify the correctness of cloth simulators. Many authors
fall back upon the old computer graphics adage, “if it looks
right, it is right” [7]. Breen et al. [3] and Eberhardt et al.
[6] have incorporated data from the Kawabata measure-
ment system into their cloth simulation systems, but there
is as yet no way to use Kawabata data with more mod-
ern simulators. Furthermore, the Kawabata device is ex-
pensive and special-purpose. It would be more convenient
to be able to determine parameters for simulation systems
using conventional equipment such as video capture de-
vices. Furthermore, video allows more information to be
obtained about cloth movement.

In this paper, I present a technique for recovering in-
formation about the position and deformation of a sheet
of rectangular cloth with a printed grid pattern. The cloth
is first acquired using a Digiclops camera and stereo cor-
respondence, producing a colour image and a depth map.
Subsequently, deformation of the cloth is measured by de-
tecting features in the grid pattern.

The most similar work to mine is that of Jojic et al. [8],
who tried to estimate cloth draping parameters from range
data. Their technique used only range data without associ-
ated colour information. They treated the range data as a
solid surface, and used a cloth simulator to drape an imagi-
nary cloth over the solid surface, from which they inferred
cloth parameters. Many details of this technique remain
unclear.

Louchet et al. [9] used synthetic data from a simulation
to recover dynamic parameters for a mass-spring based
cloth simulator. The input to their system is not speci-
fied explicitly, but it was not images; instead, a 3D mesh
of cloth points was likely used. Their work does not, then,
overlap with my own.

2 Acquisition

2.1 Algorithm

A number of algorithms were considered for recovery of
depth from images. For the purposes of this project, the
ideal algorithm would:
• allow any type of pattern on the cloth, including the

planned grid pattern. Algorithms such as shape-from-
shading require unpatterned surfaces to work.
• allow stereo video sequences. A passive technique is

hence preferable to an active technique such as shape-
from-lighting-variation. Likewise, any algorithm that
requires a series of viewpoints is not feasible. Multi-
ple cameras could alleviate this restriction, but were
not considered in this project.
• allow non-rigid deformations. Unlike rigid structures,

cloth deforms in many ways: stretching, shearing and
bending. Furthermore, deformation may be at a fine
scale, involving small wrinkles or folds. Algorithms
such as shape-from-texture may be difficult to adapt
to these requirements.
• provide precise depth data.
• be easy to implement or have readily available imple-

mentations.
• work with any type of cloth material.
• not distort the motion or shape of the cloth. Any

changes made to the cloth must not affect the weight
or stiffness of the cloth.

Of the available shape recovery algorithms, stereo
correspondence comes the closest to meeting these re-
quirements. Correspondence algorithms require textured
cloth—not necessarily large-scale patterns, but certainly
fine-scale texture, in the form of visible strands or fluff.
This limits the range of materials that can be captured;
in my tests, cotton T-shirts were often unacceptable, but
fluffy teatowels worked quite well. Fine texture could be
added in other acceptable ways, however, such as a light
spray-paint layer. Stereo correspondence is a passive tech-
nique, allows capture of any surface type, and is easy to
implement. Its precision is limited, since depth samples



are quantised by the capture process.

2.2 Method

Capture was performed using a Digiclops camera, manu-
factured by Point Grey Research. Due to limited dynamic
range, lighting had to be carefully controlled. Incandes-
cent light produced good results, but indirect natural light
seemed did an even better job at depth recovery. White
cloth was found to be easier to capture than darker shades.
The cloth was suspended by one edge from a stand, and
placed against a dark background for easy segmentation.
The cloth used was a white cotton teatowel with printed
blue and yellow stripes. The vertical stripes were solid,
while the horizontal stripes were a mixture of colour and
white stitching.

The Digiclops provided three images (right, top and
left), each at1024×768. Stereo processing was performed
on greyscale images using the Triclops SDK. Images were
rectified, low-pass filtered, and edge-filtered. Stereo corre-
spondence was performed on the images, and points were
validated using a median filter. The full list of parameters
used is shown in Table 1. After processing with the Tri-
clops SDK, the final output of the capture process was a
colour image, a depthmap, and a mask indicating the valid
pixels. All outputs are shown from the right camera’s view
in Figure 1.

Subpixel interpolation was used, but had some def-
inite disadvantages. Stereo correspondence algorithms
are limited to a maximum precision of one pixel. This
leads to quantisation of the depth data, yielding a coarse,
jagged appearance. Subpixel interpolation attempts to
solve this problem by interpolating depth values to produce
a smoother surface. Unfortunately, high contrast edges of
the cloth gave rise to errors in the interpolated depth data,
as seen in Figure 2. These ridges are not present in the
actual geometry of the cloth. A flat sheet of paper with a
checkerboard pattern produced similar artefacts.

For the purposes of this paper, these ridges are accepted
as a source of error. For more accurate results, they should
be filtered out, or some other technique should be used to
deal with quantisation errors. It remains uncertain whether
the errors are caused by subpixel interpolation, or if they
were already present in the data and were simply more ob-
vious after interpolation.

3 Feature Detection

3.1 Motivation

The acquisition process produced three images: a colour
image, a depth image, and a binary mask specifying which
parts of the images contain valid data. These images con-
tain information about both the cloth and the backdrop.

Colour and depth data contains some useful information
about the properties of the underlying cloth. However, to

Figure 1: Outputs of acquisition stage. From top to bot-
tom: colour image, depth image, mask, masked depth im-
age with scaled intensities.



Parameter Value
Gain 525
Shutter 500
Depth Range [0.1 . . . 1]
Resolution 1024× 768
Colour buffer 24 bits
Depth buffer 16 bits
Low-Pass Filter on
Rectification on
Edge Correlation on
Edge Mask Size 7
Stereo Mask Size 11
Disparity Range [0 . . . 64]
Disparity Mapping off
Texture Validation on
Texture Validation Threshold 1.1
Unique Validation on
Unique Validation Threshold 0.8
Subpixel Interpolation on

Table 1: Digiclops Parameters

Figure 2: Left: colour image of region of cloth. Right:
depth image of same region. Vertical lines in depth data are
artefacts, caused by high-contrast vertical stripes. Lower-
contrast horizontal stripes do not cause artefacts.

understand the material properties and dynamic behaviour
of cloth, more information is needed about the cloth sur-
face. Topological information is needed in order to recover
the shape of the cloth and to help with the identification of
folds and wrinkles in the surface. Measurements of the sur-
face deformation—stretch, shear and bend—can help with
understanding the physical properties of the cloth material.

Recovering this information from the acquired data is a
nontrivial task. To fully recover topology requires knowl-
edge of sections of the cloth which may be occluded in
the depth buffer by folds in the cloth. Measuring the ex-
act stretch, shear or bend of the surface at any point is
also a difficult task. To simplify the extraction of topol-
ogy and deformation, a few simplifying assumptions were
made. The cloth was assumed to be rectangular, with a
grid pattern printed on it. By identifying the grid inter-
section points, a rough estimate of the cloth topology was
established. Furthermore, by examining the distortion of
the rectangles defined by the grid, the local surface defor-
mation could also be estimated.

A similar approach has been used in cloth simulation.
Baraff and Witkin [1] discretised a cloth surface into a tri-
angular mesh, then measured the stretch and shear energy
in each triangle, and the bend energy between pairs of tri-
angles. These energies were used to determine forces to
apply to the mesh vertices. In their paper, they consider
the position of each mesh vertices in a flat, undeformed
mesh in the(u, v) plane. Each vertex thus had two sets of
co-ordinates:(u, v) co-ordinates defining its undeformed
position, and(x, y, z) co-ordinates defining its actual posi-
tion in three-dimensional space. Baraff and Witkin defined
energy functions to measure stretching, shearing and bend-
ing in the cloth using this information.

I have adopted Baraff and Witkin’s convention for co-
ordinates. In this section, I summarise a technique for de-
tecting grid vertices, and for then recovering(u, v) infor-
mation.

3.2 Approach

The grid pattern printed on the cloth had two overlaid
grids, one in blue and one in yellow, printed on top of
a white cloth. The yellow grid had poor contrast against
the white background, so only the blue grid was used for
extraction. This was accomplished by using only the red
channel of the acquired colour image.

The grid vertex detection scheme depends upon two in-
puts: the red channel of the colour image, and a mask
defining the valid regions in the image. The grid vertices
were difficult to detect with conventional schemes, such
as the SUSAN corner detector [13]. Instead, greyscale
mathematical morphology techniques were used [10],[12].
MATLAB was used for all of these image-processing op-
erations.

The overall strategy was to detect the squares bounded
by the grid. For each square, the set of neighbouring
squares was established. Using these neighbours, the set
of squares bounding each corner could be determined. Fi-



nally, the corners were detected by finding the point that
was minimally distant from each square.

3.2.1 Square Detection

In a first pass, the squares bounded by the grid are detected
using the watershed transform introduced by Beucher [2].
The intuitive explanation for this transform involves pic-
turing the image as a heightfield, where intensity repre-
sents height. In this terrain, there are a number of catch-
ment basins (local minima). If one imagines slowly rising
water emerging from the bottom of each basin, eventually
the water will reach a stage where two catchment basins
merge. The points where the basins merge form “water-
shed lines”. The watershed transform uses this analogy to
label each independent catchment basin in the input image,
and to identify all watershed lines.

For the detection of grid points, the squares bounded
by the grid were treated as catchment basins, and the grid
lines are the watershed. The image was inverted, so that
the white squares became valleys and the dark grid lines
became peaks. Contrast enhancement was used to am-
plify the difference between peaks and valleys. Using a
thresholding operation (the extended-minima transform),
most of the valleys were forced to zero. Finally, the water-
shed transformation was applied. The combination of the
extended-minima operation and the watershed transforma-
tion is equivalent to a watershed-from-markers operation.

The watershed transform labels pixels in each catchment
basin with a unique value, as shown in Figure 3. There are
a number of incorrect small basins, typically caused by
aliasing artefacts near the two thick vertical stripes. By
calculating the area of each catchment basin and rejecting
basins below a minimum size, these can be eliminated. A
dilated version of the mask was used to eliminate basins
outside the mask.

Some errors are evident: adjacent squares were some-
times merged, and individual squares were sometimes
split. By adjusting the threshold used in the extended-
minima transform, it was possible to prefer more merging
errors and less splitting errors, or the opposite. In the end,
splitting errors were found to be preferable to merging er-
rors.

3.2.2 Neighbourhood Detection

To find the neighbours of a given square, the following pro-
cedure was used. The watershed image provided a mask
for the square, indicating all pixels belonging to the square.
A residue mask was constructed by dilating the square
mask with a two-pixel radius disc, and then subtracting
the square mask. This residue mask was in turn used with
the watershed image to find the neighbouring squares, as
demonstrated in Figure 4. Neighbours with many pixels
in the dilated mask shared an edge, and were part of the
4-neighbourhood of this square. Neighbours with only a
few pixels in the dilated mask probably share a corner with
this square, but not an edge, and were hence part of the 8-
neighbourhood of the square. The process was repeated

Figure 3: Top: colour-coded output of watershed algo-
rithm. Bottom: colour-coded watershed image, with mask
applied and small basins rejected, superimposed on red
channel of colour image.



Figure 4: Top row: watershed + colour image around
square, square mask. Bottom row: residue mask, residue
mask + colour image.

Figure 5: First row: distance transforms of four corners.
Black is zero distance, white is ten pixels’ distance. Sec-
ond row: maximum of distance transforms. The measured
position of the corner is the darkest point in this image.

with a larger-radius disk for the mask dilation, to find all
of the 8-neighbours of the square. For better performance,
all of these operations were performed on a cropped im-
age.

3.2.3 Corner Detection

The corner detector takes a list of squaresSi as input, and
finds the point which is “closest” to all four squares. To be
precise, it finds the pointp that minimises

max
i
d(p, Si)

whered(p, S) is the Hausdorff distance betweenp andS.
The Hausdorff distance is calculated by taking the distance
transform of each square mask, as shown in Figure 5. For
better performance, these operations were performed on a
cropped image.

To obtain the list of squares for input to the corner de-
tection routine, a slightlyad hocstrategy was necessary.
First, a set of four squares was tried: a reference square,
two of its 4-neighbours, and one diagonal 8-neighbour. By
using a radial sort of the neighbours, these squares were
guaranteed to share a corner. If this failed due to a miss-
ing neighbour, it was retried with two 4-neighbours, or
one 4-neighbour and an 8-neighbour. If only a single 4-
neighbour was available, no corner was measured.

Figure 6: Red channel of colour image with detected cor-
ners superimposed.

The final set of corners is shown in Figure 6. As can
be seen, there are a number of incorrect corners. These
are mostly due to the choice of threshold in the watershed
stage. By preferring splitting to merging, less false nega-
tives are obtained, but more false positives are generated.
Even still, there are a handful of corners that were not de-
tected. There are a number of techniques that could rem-
edy this: repeated attempts with different thresholds in the
watershed stage could help, as could detection of corners
in the case where only a 4-neighbour was available.

3.2.4 Specification of(u, v)

In order to associate a(u, v) co-ordinate with each of these
points, user interaction was required. The user was shown
a point and asked to enter its position on the grid (an inte-
ger number of squares from the bottom left corner), which
was then mapped to a(u, v) value in the unit square. The
user was also able to reject incorrect corners.

4 Results

In order to evaluate the quality of the measurements, two
meshes were constructed. The first mesh was built us-
ing the data acquired during the acquisition stage, using a
heightfield to represent the acquired depth map, and apply-
ing the colour image as a texture on this heightfield. Since
the source depth map is large (1024× 768), this mesh has
a lot of fine detail.

The second mesh was built using the detected grid ver-
tices. A depth value was determined for each grid vertex
by doing a lookup in the depth map. For a texture, a scan
of the flattened cloth was used. The grid has only a small
number of vertices (21× 25), so this mesh is quite coarse.

These two meshes are shown in Figure 7, along with a
superimposition of the two. The colours in the two meshes
are different, since the first mesh was acquired using a
careful lighting setup to allow good depth measurement,
while the second mesh’s texture is simply a scan of the
cloth. As can be seen in the superimposition, the grid lines



match up quite well between the two meshes, indicating a
good measurement of the grid vertex positions.

While capture was successful over the large, mostly flat
regions of the cloth, there were problems in the large fold
in the top left corner. Here, only sparse data was able to be
captured. There are also patches of cloth that are missing,
some of which were due to creases that were mistaken for
grid intersections.

5 Future Work

Samaras et al. [11] describe an improved stereo algo-
rithm incorporating shape-from-shading that works with
surfaces of variable albedo. This technique might prove
useful for improving the depth data acquisition.

In this work, (u, v) co-ordinates were only measured
for the grid vertices. However, interpolated(u, v) co-
ordinates could be used for all other depth samples, giving
a complete depth map with(u, v) information. In this case,
the(u, v) co-ordinates would be more unreliable, since mi-
nor features such as wrinkles and creases would not be
accounted for; however, the finer geometry might still be
useful.

Using the(u, v) values found here, one could also mea-
sure actual stretch, shear and bend distributions over the
cloth. It may also be possible to infer the most likely pa-
rameters for a given cloth simulator given this data and a
suitable experimental setup.
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