# Travel Forecasting for New Starts

A Workshop Sponsored by The Federal Transit Administration

March 23-25, 2009 Tampa

# Summit Tutorial – Welcome

#### Session 1

- FTA motivations
- Agenda for today



#### **FTA Motivations for Summit**

- FTA interest in analytical reporting of forecasts
  - FTA evaluation measures for New Starts
  - Quality control
  - Information for decision making
  - Cases for projects
- Summit a tool for analytical reporting
- Other tools available
- Key is good reporting, not the reporting tool(s)





- Session 2: Summit
  - Files, control, reports
  - Interfaces with travel models
- Break
- Session 3: Sample problems
  - Prototypical questions
  - Conceptual approach to providing answers
  - Implementation of the approach in Summit
  - Results

## Summit

#### Session 2

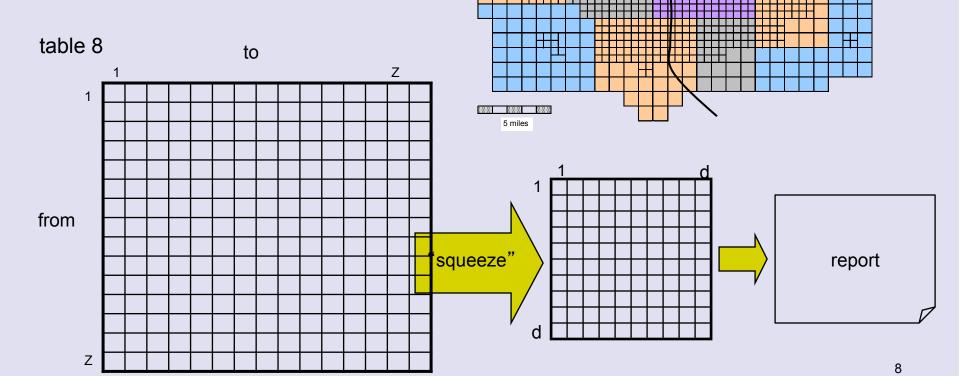
- Analytical reporting of travel forecasts
- Summit basics
- User benefits







- Information from travel forecasts
  - Trip tables
  - Impedance tables
  - Volumes on facilities
- Volumes routinely reported; tables less so
- Insights from trips tables & impedance tables
  - Relevant travel markets
  - Sources and impacts of errors
  - Causes and incidence of benefits






- Trip tables
  - District-to-district summaries
  - District-to-district deltas and ratios
  - Row-percents and column-percents

# **Analytical Reporting**

- Trip tables
  - Summary districts
  - Aggregation ("squeeze")



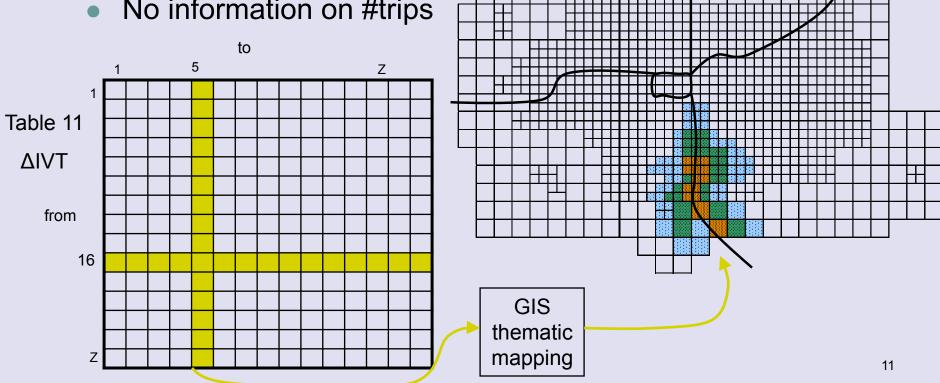
Urbanville

Summary Districts





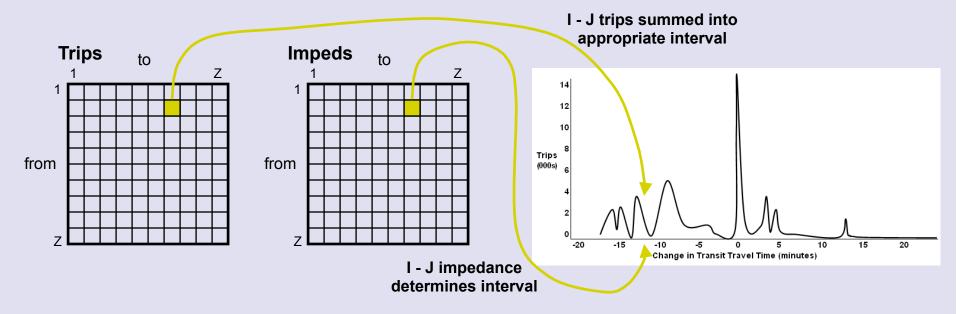
- Trip tables reports and applications
  - District-to-district totals, deltas, and ratios; e.g.:
    - Person-trip <u>flows</u> and person-trips <u>flows</u> by mode
    - New transit trips
    - Mode shares
    - Average auto-occupancies
  - Row-percents and column-percents
    - Calibration of trip-distribution models
    - Travel markets to the CBD and other activity centers






- Impedance tables a whole new ballgame
  - Thematic maps
  - Trip length frequency distributions
  - Stratified tables

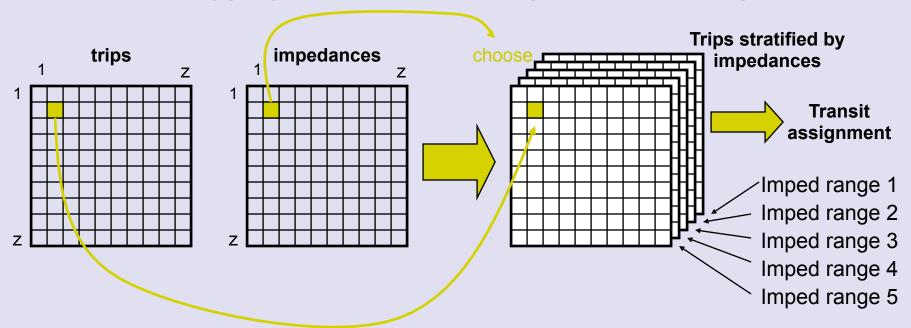



- Impedances in thematic maps
  - i to all Z; all Z to j
  - Totals or deltas
  - No information on #trips





## **Analytical Reporting**


- Impedances used in frequency distributions of trips
  - Trips summed by impedance increments
  - Total or delta impedance
  - Trips, but entirely aggregate: no geography, no flows







- Impedances used to "stratify" trip-tables
  - Trip-table cells assigned to impedance-specific tables
  - Stratified tables available for various analyses including D-to-D aggregation, network assignment, mapping, etc.







- Impedance tables summary
  - Thematic maps (for totals and for deltas)
    - Impedances to/from individual zones
    - Lots of detail but individual focus and nothing on trips
  - Trip length frequency distributions (for  $\Sigma$ s and  $\Delta$ s)
    - Useful summary of impedances and trips
    - No geography
  - Stratified tables (largely for deltas)
    - Lots of detail and opportunity for further analysis
    - Powerful differentiation of trips by impedance ranges





- Topics
  - Overview
  - Inputs
  - Controls
  - Outputs

A forecast is not useful until you Summarizeit



- Overview
  - Two functions
    - Analytical reporting of forecasts
    - Calculation and reporting of user benefits
  - Philosophy
    - Embedded reporting step in model-application stream
    - Summit computations → no change to applications
    - Less reporting effort → more time for QC and insights



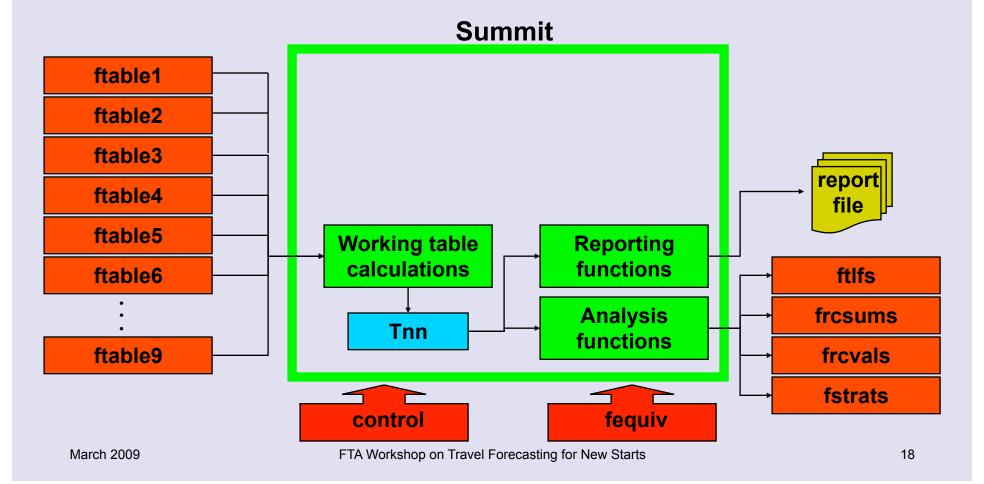
- Overview (continued)
  - General software characteristics
    - PC operating system (Windows); DOS based
    - Written in Fortran
    - Fluent in the native matrix-file formats of:

- EMME/2 - Tranplan - Voyager

- MinUTP - TransCAD - text

- TP+ - (VISUM)

Upcoming release


Version 1.0 July 2009 Version 1.0 Software:

Documentation:





Overview (continued) -- information flow with Summit







#### Control file

- Keyword groups (namelists)
  - fnames- names for all files
  - params #zones, #districts, software platform,
    - output file format
  - tables calculation specs for "working" tables
  - trpt settings for one table report
  - analysis frequency distributions, stratified tables
    - row|column values, rowsums|colsums
  - pages pagination of D-to-D reports the report file



- Control file (continued)
  - Syntax for table specifications
    - Table references
      - tfnnn
        - t = table indicator
        - f = file number; omitted for working tables
        - nnn or nn = table number
      - t203 = 3<sup>rd</sup> table of ftable2
      - t12 = 12<sup>th</sup> internal "working" table



- Control file (continued)
  - Operators for table specifications

for add, subtract, multiply

• /

for divide (district-level tables only)

> = <</p>

for 1 if true, 0 if false

y M x

for maximum value of x and y

y m x

for minimum value of x and y

where x and y are both tables or one is a table and one is a real number



- Control file (continued)
  - Sample specifications for working tables

!person trips by

• t2 = 't101 / t1'

!transit share

!impedance

• 
$$t4 = t201 > 0$$

!got a transit path

!transit expenditure

9pecifications must be in single quotes in single quotes operations

Comments begin with exclamation marks





- Control file (continued)
  - Analysis

| <ul><li>Freq distributions</li></ul> | tlf1 = 21,31 | !trips,impeds    |
|--------------------------------------|--------------|------------------|
|                                      | intvltlf = 5 | !5-min intervals |

| <ul><li>Stratified tables</li></ul> | tstrats = 21,31             | !trips,impeds |
|-------------------------------------|-----------------------------|---------------|
|                                     | bpstrats = $-15, -5, 5, 15$ | !breakpoints  |

Row|col sums trcsums=21,22 !tables

- Output files
  - Report control playback & D-to-D reports
  - Plain D-to-D reports (interior cell values only)
  - Frequency-distribution
  - Row-and-column cell values
  - Rowsums-and-colsums
  - Stratified z-to-z trip tables



- Output files (continued)
  - frpt: reports of district-to-district s

Report S-3
Transit Person-Trips in the TSM Alternative
All Transit-Access Markets
All Trip Purposes

| Production |     |      |       |      |      |      |      | Attra | ction Di | strict |       |        |         |       |    |         |
|------------|-----|------|-------|------|------|------|------|-------|----------|--------|-------|--------|---------|-------|----|---------|
| District   | - 1 | 1    | 2     | 3    | 4    | 5    | 6    | 7     | 8        | 9      | 10    | 11     | 12      | 13    | 14 | Total   |
|            | +-  |      |       |      |      |      |      |       |          |        |       |        |         |       |    | +       |
| 1 Perris   | ı   | 1692 | 3269  | 31   | 88   | 505  | 39   | 286   | 383      | 287    | 130   | 98     | 348     | 0     | 0  | 7156    |
| 2 CityRiv  | - 1 | 1133 | 26433 | 341  | 36   | 71   | 191  | 2613  | 4886     | 2166   | 961   | 1234   | 3092    | 1     | 0  | 43158   |
| 3 Norco    | - 1 | 40   | 2087  | 805  | 2    | 5    | 24   | 1367  | 570      | 230    | 233   | 336    | 1289    | 1     | 0  | 6989    |
| 4 Hemet    | - 1 | 651  | 1383  | 10   | 3739 | 616  | 201  | 144   | 132      | 136    | 9     | 20     | 161     | 0     | 0  | 7202    |
| 5 Temecula | - 1 | 319  | 725   | 10   | 14   | 3853 | 16   | 254   | 460      | 522    | 142   | 135    | 619     | 0     | 0  | 7069    |
| 6 CVAG     | - 1 | 183  | 1158  | 9    | 40   | 16   | 8530 | 1231  | 129      | 91     | 29    | 53     | 338     | 0     | 0  | 11807   |
| 7 SBD      | - 1 | 108  | 3568  | 229  | 19   | 28   | 295  | 75886 | 3115     | 1150   | 4409  | 3581   | 18887   | 6     | 0  | 111281  |
| 8 OC North | - 1 | 9    | 535   | 12   | 2    | 8    | 4    | 478   | 105543   | 36716  | 2680  | 8771   | 15720   | 3     | 0  | 170481  |
| 9 OC South | - 1 | 4    | 153   | 2    | 0    | 2    | 0    | 172   | 11045    | 34648  | 1516  | 1415   | 3159    | 0     | 0  | 52116   |
| 10 LA CBD  | - 1 | 0    | 4     | 0    | 0    | 0    | 0    | 32    | 56       | 6      | 3414  | 3340   | 4637    | 12    | 0  | 11501   |
| 11 LA Corr | - 1 | 3    | 185   | 6    | 0    | 2    | 0    | 742   | 12182    | 2592   | 26659 | 159969 | 159500  | 287   | 0  | 362127  |
| 12 LA Rest | - 1 | 34   | 520   | 37   | 4    | 9    | 17   | 8133  | 13873    | 4833   | 54253 | 135949 | 893730  | 6753  | 0  | 1118145 |
| 13 Ventura | - 1 | 0    | 1     | 0    | 0    | 0    | 0    | 33    | 44       | 10     | 1786  | 1204   | 10544   | 16294 | 0  | 29916   |
| 14 Pseudo  | - 1 | 0    | 0     | 0    | 0    | 0    | 0    | 0     | 0        | 0      | 0     | 0      | 0       | 0     | 0  | 0       |
|            | +-  |      |       |      |      |      |      |       |          |        |       |        |         |       |    | +       |
| Total      | - 1 | 4176 |       | 1492 |      | 5115 |      | 91371 |          | 83387  |       | 316105 |         | 23357 |    | 1938948 |
|            | -1  |      | 40021 |      | 3944 |      | 9317 |       | 152418   |        | 96221 | :      | 1112024 |       | 0  | ı       |

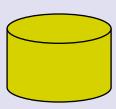
- Output files (continued)
  - ftlfs frequency distributions

| tlf1<=V -50.0 -45.0 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 +.0 5.0 10.0 20.0 25.0 30.0 | t21:31<br>0<br>1041<br>134<br>216<br>188<br>382<br>371<br>547<br>733<br>1615<br>11788<br>18242<br>21185<br>6904<br>3735<br>2329<br>1961 | t1f2<=V t | 22:32 tlf3<=V<br>-15.0<br>-10.0<br>-5.0<br>+.0<br>0.0<br>5.0<br>10.0<br>15.0<br>20.0<br>25.0<br>> trips in table<br>> 1st column |         |             | pedance    |            |          |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------|---------|-------------|------------|------------|----------|
|                                                                                                    |                                                                                                                                         |           |                                                                                                                                  |         |             | •          |            |          |
| 40.0<br>45.0<br>50.0                                                                               | 1058<br>5970<br>0                                                                                                                       |           | > 2nd column                                                                                                                     | = numbe | er of trips | in this im | npedance i | interval |



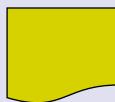
- Output files (continued)
  - frcvals cell values from selected rows/columns of selected tables

```
zone r060001 r060005 r063401 r063405 r064101 r064105 c006601 c006605 c047201 c047205 c047501 c047505
   1
        0.00
                 0.00
                          0.00
                                   0.00
                                            0.00
                                                     0.00
                                                             0.00
                                                                      0.00
                                                                               0.00
                                                                                        0.00
                                                                                                 0.00
                                                                                                          0.00
   2
        0.00
                 0.00
                          0.00
                                   0.00
                                            0.00
                                                     0.00
                                                            41.00
                                                                     12.30
                                                                               0.00
                                                                                        0.00
                                                                                                 0.00
                                                                                                          0.00
        0.00
                 0.00
                          0.00
                                   0.00
                                            1.00
                                                     2.38
                                                            11.00
                                                                      5.58
                                                                               0.00
                                                                                        0.00
                                                                                                 0.00
                                                                                                          0.00
                23.58
                                            1.00
                                                    25.02
                                                            25.00
                                                                      8.76
                                                                               0.00
        1.00
                          1.00
                                   2.45
                                                                                        0.00
                                                                                                 1.00
                                                                                                          8.05
                 0.00
                                            0.00
                                                                               0.00
   5
        0.00
                          0.00
                                   0.00
                                                     0.00
                                                            16.00
                                                                     19.20
                                                                                        0.00
                                                                                                 0.00
                                                                                                          0.00
                 0.00
                          0.00
                                            0.00
                                                     0.00
                                                            31.00
                                                                     50.92
                                                                               0.00
                                                                                        0.00
                                                                                                 1.00
        0.00
                                   0.00
                                                                                                          0.45
   7
        1.00
                 2.95
                          0.00
                                   0.00
                                            0.00
                                                     0.00
                                                            33.00
                                                                     37.79
                                                                               0.00
                                                                                        0.00
                                                                                                 0.00
                                                                                                          0.00
   8
        0.00
                 0.00
                          0.00
                                            0.00
                                                     0.00
                                                             8.00
                                                                      8.07
                                                                               0.00
                                                                                        0.00
                                                                                                 0.00
                                   0.00
                                                                                                          0.00
   9
        1.00
                 5.34
                          0.00
                                   0.00
                                            0.00
                                                     0.00
                                                            13.00
                                                                     18.38
                                                                               0.00
                                                                                        0.00
                                                                                                 0.00
                                                                                                          0.00
  10
        0.00
                 0.00
                          2.00
                                  20.93
                                            1.00
                                                     5.41
                                                            19.00
                                                                     35.03
                                                                               1.00
                                                                                       -0.94
                                                                                                 0.00
                                                                                                          0.00
         . . . .
```




- Output files (continued)
  - frcsums row and column sums from selected tables

| zone | rs3  | rs5   | cs3  | cs5   |
|------|------|-------|------|-------|
| 1    | 0    | 0     | 0    | 0     |
| 2    | 376  | 377   | 57   | 298   |
| 3    | 103  | 83    | 16   | 119   |
| 4    | 295  | 300   | 51   | 455   |
| 5    | 189  | 371   | 24   | 128   |
| 6    | 549  | 898   | 130  | 278   |
| 7    | 427  | 510   | 57   | 194   |
| 8    | 94   | 84    | 3    | 0     |
|      |      |       |      |       |
|      |      |       |      |       |
|      |      |       |      |       |
|      |      |       |      |       |
|      |      |       |      |       |
| 761  | 1261 | 2914  | 568  | 1977  |
| 762  | 936  | 339   | 3171 | 34758 |
| 763  | 1011 | 20666 | 857  | 4761  |
| 764  | 655  | 21008 | 267  | 2679  |
|      |      |       |      |       |




- Output files (continued)
  - fstrats zone-to-zone tables from table stratification in specified software format



frpt – district-to-district summaries of the stratified tables

|               |                    |    |    |     | Repor | rt 2-1 |     |    |      |        | xfersT:<br>ss Tha |        | BLD-TS<br>-0.01 | M Wtd : | l'ime |     |      |     |       |       |
|---------------|--------------------|----|----|-----|-------|--------|-----|----|------|--------|-------------------|--------|-----------------|---------|-------|-----|------|-----|-------|-------|
| Origin        |                    |    |    |     |       |        |     |    |      | Destin | ation 1           | Distri | et              |         |       |     |      |     |       |       |
| District      | 1                  | 1  | 2  | 3   | 4     | 5      | 6   | 7  | 8    | 9      | 10                | 11     | 12              | 13      | 14    | 15  | 16   | 17  | 18 I  | Total |
| 1 Waianae     | -+                 | 0  | 0  | 0   | 15    | 28     | 94  | 20 | 82   | 140    | 26                | 30     | 65              | 451     | 56    | 36  | 192  | 116 | 38    | 1389  |
| 2 Makakilo    | ı                  | 0  | 0  | 0   | 16    | 10     | 48  | 3  | 29   | 67     | 10                | 36     | 41              | 247     | 32    | 20  | 237  | 56  | 18 I  | 870   |
| 3 Kapolei     | 1                  | 0  | 0  | 0   | 14    | 10     | 94  | 11 | 70   | 47     | 18                | 28     | 18              | 111     | 17    | 13  | 139  | 33  | 15    | 638   |
| 4 Ewa         | 1                  | 2  | 2  | 34  | 11    | 11     | 23  | 17 | 131  | 126    | 31                | 57     | 46              | 317     | 58    | 42  | 372  | 82  | 36 J  | 1398  |
| 5 NCentVall   | ı                  | 9  | 12 | 151 | 35    | 0      | 84  | 0  | 201  | 303    | 128               | 142    | 142             | 906     | 210   | 246 | 375  | 209 | 72    | 3225  |
| 6 Waipahu     | ı                  | 0  | 9  | 141 | 1     | 4      | 3   | 36 | 154  | 120    | 41                | 31     | 55              | 319     | 78    | 148 | 639  | 93  | 37    | 1909  |
| 7 Waiawa      | ı                  | 0  | 2  | 107 | 2     | 0      | 18  | 0  | 58   | 35     | 17                | 8      | 26              | 113     | 24    | 51  | 210  | 29  | 7.1   | 707   |
| 8 PrlCtyAiea  | 1                  | 0  | 4  | 75  | 0     | 0      | 9   | 1  | 2    | 40     | 189               | 47     | 25              | 157     | 39    | 23  | 59   | 31  | 39 J  | 740   |
| 9 AirportPH   | 1                  | 1  | 0  | 3   | 0     | 1      | 2   | 0  | 3    | 0      | 4                 | 2      | 6               | 19      | 11    | 1   | 9    | 2   | 1     | 65    |
| 10 SltLk Hlwa | ı                  | 0  | 0  | 12  | 1     | 16     | 12  | 3  | 235  | 0      | 18                | 28     | 76              | 88      | 69    | 22  | 60   | 35  | 17    | 692   |
| 11 Iwilei     | ı                  | 0  | 0  | 2   | 2     | 0      | 6   | 0  | 11   | 10     | 37                | 2      | 2               | 22      | 70    | 2   | 86   | 12  | 6     | 270   |
| 12 Klhi Nnu   | 1                  | 0  | 0  | 0   | 2     | 4      | 3   | 0  | 20   | 30     | 44                | 6      | 1               | 62      | 77    | 30  | 120  | 25  | 0 1   | 424   |
| 13 Core       | 1                  | 0  | 0  | 7   | 1     | 7      | 8   | 0  | 43   | 25     | 40                | 9      | 7               | 57      | 44    | 36  | 161  | 19  | 0     | 464   |
| 14 Makiki     | ı                  | 0  | 0  | 3   | 0     | 0      | 4   | 0  | 26   | 53     | 65                | 56     | 35              | 208     | 0     | 0   | 0    | 0   | 1     | 451   |
| 15 Manoa      | ı                  | 0  | 0  | 1   | 0     | 1      | 4   | 1  | 21   | 8      | 8                 | 2      | 0               | 22      | 0     | 0   | 0    | 0   | 0     | 68    |
| 16 Waikiki    | ı                  | 0  | 0  | 2   | 0     | 3      | 1   | 0  | 18   | 0      | 16                | 20     | 0               | 3       | 0     | 0   | 0    | 0   | 0     | 63    |
| 17 EHonolulu  | 1                  | 0  | 0  | 6   | 3     | 4      | 4   | 1  | 22   | 29     | 54                | 47     | 28              | 85      | 0     | 0   | 0    | 0   | 0 1   | 283   |
| 18 Windward   | !                  | 0  | 0  | 8   | 3     | 5      | 12  | 2  | 38   | 56     | 4                 | 0      | 5               | 11      | 37    | 141 | 236  | 18  | 0 1   | 576   |
| Totals        | . <del>, .</del> . | 12 |    | 552 |       | 104    |     | 95 |      | 1089   |                   | 551    |                 | 3198    |       | 811 |      | 760 | i     | 14232 |
|               | ı                  |    | 29 |     | 106   |        | 429 |    | 1164 |        | 750               |        | 578             |         | 822   |     | 2895 |     | 287 J |       |







- Topics
  - Definition
  - Calculation
  - Transit-access markets
  - Implementation with conventional models
  - Application





- Definition (for New Starts project evaluation)
  - User benefits are the changes in travel expenditures for fixed set of trips that are:
    - caused by changes in the attributes of a travel mode (or several modes);
    - measured in hours of travel time; and
    - summed over all travelers and all zone-to-zone interchanges.





- Calculation
  - UB<sub>ij</sub> = PTrips<sub>ij</sub> x dP<sub>ij</sub>
  - where
    - UB<sub>ij</sub> = user benefits for travelers from zone i to zone j
    - PTrips<sub>ii</sub> = person trips from i to j in the base alternative
    - dP<sub>ij</sub> = change in the <u>overall</u> price of travel from i to j considering all modes together



- Calculation (continued)
  - LogSum as the <u>overall</u> price of travel
    - All travelers / all travel options / all attributes
    - Reflects importance (share) of each mode
    - Decreases with improvements to options
    - Decreases with addition of a new option
    - Increases with loss of an option
    - Amenable to market segmentation across socioeconomic class (income, autos)
    - Mode-choice denominator!



- Calculation (continued)
  - dP<sub>ij</sub> = change in the price of travel from i to j
     = { In[Σexp(U<sup>B</sup><sub>m</sub>)] In[Σexp(U<sup>b</sup><sub>m</sub>)] } / C<sub>ivt</sub>
  - where
    - C<sub>ivt</sub> = coefficient on in-vehicle time
    - In[Σexp(U<sub>m</sub><sup>A</sup>)] = inclusive price for alternative A
    - B and b = Build and base alternatives
    - m is the set of available modes: transit and "other"

See spreadsheet and narrative in Discussion #11 at: http://www.fta.dot.gov/planning/newstarts/planning\_environment\_5402.html



- Calculation of capped user benefits
  - dPt<sub>ij</sub> = change in the price of <u>transit</u>
     = { In[exp(U<sub>t</sub><sup>B</sup>)] In[exp(U<sub>t</sub><sup>b</sup>)] } / C<sub>ivt</sub>
    - where In[exp(U<sub>t</sub><sup>A</sup>)] = inclusive transit price for alt. A
    - Isolates the mode-specific contributions of UBs
  - Caps on the transit dPt<sub>ij</sub>
    - Where dPt<sub>ij</sub> < (-45)</li>
      - Reset  $Pt_{ij}^{B} = Pt_{ij}^{b} 45$

- (1) also applies to dPt > 45
- (2) purpose is to salvage shaky UB forecasts
- (3) default cap of 45 minutes can be lifted

Recompute dP<sub>ij</sub> with reset value of Pt<sub>ij</sub>



- Transit-access markets
  - Motivations
    - Avoidance of aggregation error with large dP variations
    - Detection of large coverage differences
  - Markets
    - Can walk (and may or may not be able to PnR or KnR)
    - Must drive
    - No transit
  - Joint distributions by base and build segmentations



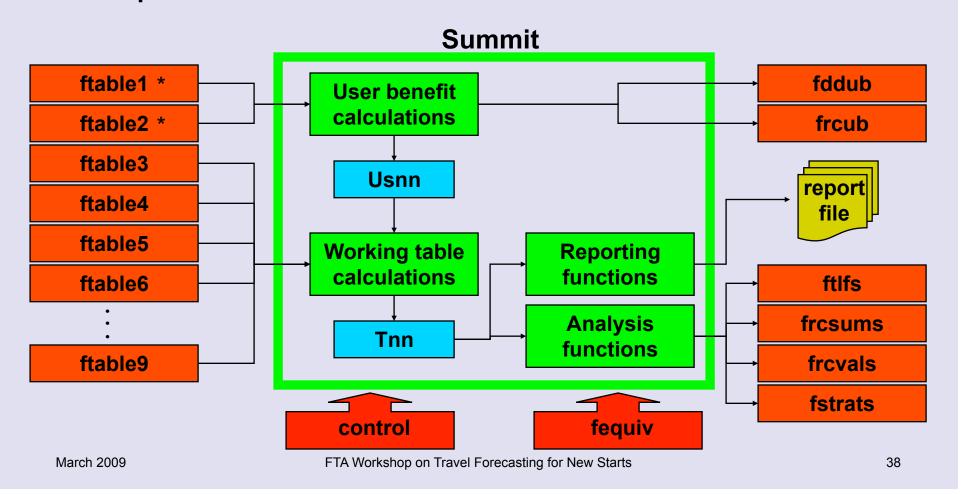
- Transit-access markets (continued)
  - Calculation of user benefits
  - For each Z-to-Z cell

#### **ALTERNATIVE**

must

no

|             |               | walk                                     | drive                                    | transit                                  |
|-------------|---------------|------------------------------------------|------------------------------------------|------------------------------------------|
| В           | can<br>walk   | dP(cw,cw)<br>x<br>PTrips(cw,cw)<br>(-1-) | dP(cw,md)<br>x<br>PTrips(cw,md)<br>(-2-) | dP(cw,nt)<br>x<br>PTrips(cw,nt)<br>(-3-) |
| A<br>S<br>E | must<br>drive | dP(md,cw)<br>x<br>PTrips(md,cw)<br>(-4-) | dP(md,md)<br>x<br>PTrips(md,md)<br>(-5-) | dP(md,nt)<br>x<br>PTrips(md,nt)<br>(-6-) |
|             | no<br>transit | dP(nt,cw)<br>x<br>PTrips(nt,cw)<br>(-7-) | dP(nt,md)<br>x<br>PTrips(nt,md)<br>(-8-) | dP(nt,nt)<br>x<br>PTrips(nt,nt)<br>(-9-) |


Caps on dPt apply only to cells 1, 5, and 9 to avoid masking coverage differences can

sum

userbenefits

i to j

Implementation within Summit



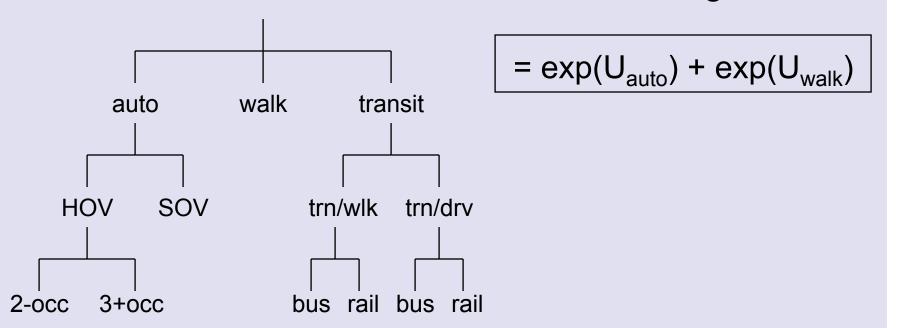


- Implementation within Summit (continued)
  - Syntax for table references to user-benefits results
    - Usnn
      - U = user-benefits table
      - s = socio-economic segment number
      - nn = user-benefits table number
      - For sum over all socio-economic segments, segments + 1

- Implementation within Summit (continued)
  - Contents of the Usnn array of user-benefits results

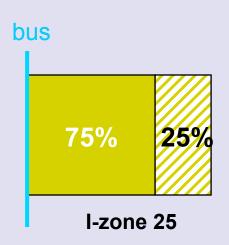
| Table groups                        | <u>Tables</u>          |
|-------------------------------------|------------------------|
| 1-10: Base person trips             | 1: CW-CW               |
| 11-20: Alt person trips             | 2: CW-MD               |
| 21-30: Base transit trips           | 3: CW-NT               |
| 31-40: Alt transit trips            | 4: MD-CW               |
| 41-50: User benefits – total        | 5: MD-MD               |
| 51-60: User benefits – auto         | 6: MD-NT               |
| 61-70: User benefits – transit      | 7: NT-CW               |
| 71-80: User benefits – trip table   | 8: NT-MD               |
| 81-89: User-benefits/trip – transit | 9: NT-NT               |
| 91-99: User-benefits/trip – total   | 10: sum of 1 through 9 |

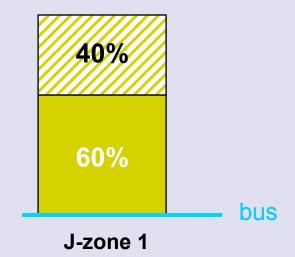
- Implementation within Summit (continued)
  - Additional keywords related to user benefits
    - fnames names for additional output files, as needed
      - fddub D-to-D aggregations of standard user benefits tables
      - frcub rowsums|colsums of zone-level user benefits tables
    - params
      - PQfiles pointers to special binary files from mode choice




- Integration with local travel models
  - Items required from mode-choice calculations for each i-j and socio-economic class in the model
    - Total person trips
    - 2. (Motorized person trips)
    - 3. Exponentiated utility of "non-transit" modes
    - Can-walk market fraction
    - Can-walk transit share
    - 6. Must-drive market fraction
    - Must-drive transit share

Details follow





- Integration with local travel models (continued)
  - #3: Computation of the exponentiated utility of nontransit modes for each access-market segment





Integration with local travel models (continued)
 #4, #6: Computation of transit-access market fractions





CW: Can walk (and maybe drive) to transit:

MD: Must drive to transit:

NT: No transit access:



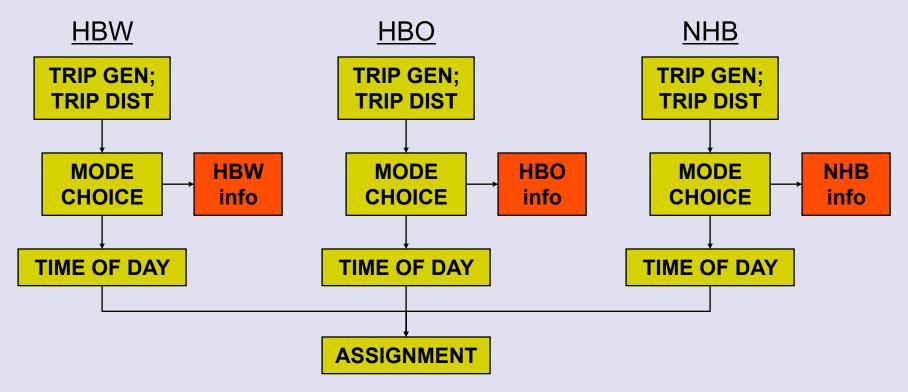
Integration with local travel models (continued)
 #5, #7: Calculation of transit shares for access markets

Transit market share<sub>ij</sub> = 
$$\frac{\text{Transit trips}_{ij} \text{ in the market}}{\text{person-trips}_{ij} \text{ in the market}}$$

For the Can-Walk and Must-Drive transit markets

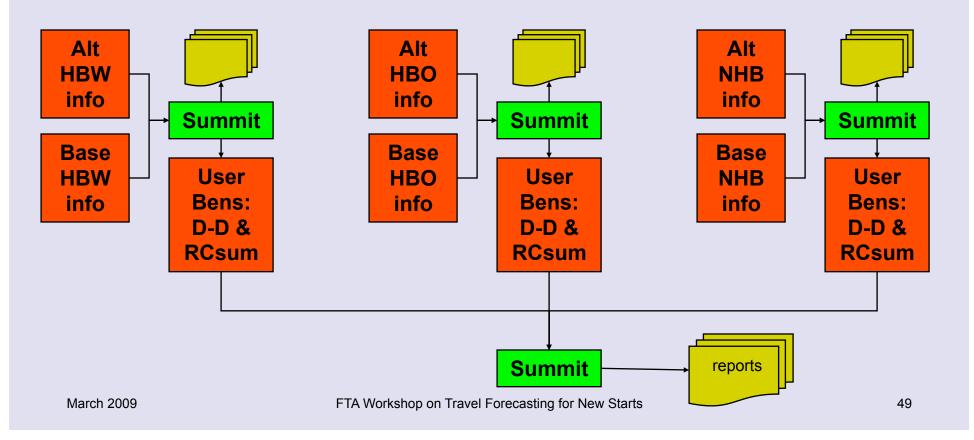


- Integration with local travel models (continued)
  - Options for mode-choice interface with Summit
    - Standard-content binary file from mode choice
      - Smaller output files and faster Summit runs
      - Modification of existing custom-written mode choice code
    - Native-format tables from mode choice
      - Useful with script-based mode choice applications
      - Useful with mode choice programs in commercial packages
  - Details in the Summit documentation






- Application
  - Fixed person-trip tables <u>required</u>
    - Consistent with long-standing FTA approach
    - No-Build person-trip table used for all alternatives
    - Isolated from ~random differences between trip tables produced from doubly-constrained distribution models




- Application (continued)
  - Interface information for each transit alternative





- Application (continued)
  - Summit calculations and reporting of forecasts



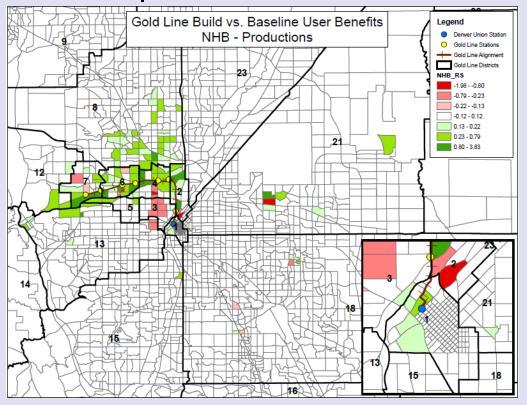


- Application (continued)
  - Additional report-file contents: UB table totals

|    | •        |       |     |       |        |         |
|----|----------|-------|-----|-------|--------|---------|
| 37 | trips    | trn   | ALT | NT-CW | 294    | trips   |
| 38 | trips    | trn   | ALT | NT-MD | 0      | trips   |
| 39 | trips    | trn   | ALT | NT-NT | 0      | trips   |
| 40 | trips    | trn   | ALT | TOTAL | 104734 | trips   |
|    |          |       |     |       |        |         |
| 41 | userbens | total |     | CW-CW | 968132 | minutes |
| 42 | userbens | total |     | CW-MD | 0      | minutes |
| 43 | userbens | total |     | CW-NT | -6954  | minutes |
| 44 | userbens | total |     | MD-CW | 0      | minutes |
| 45 | userbens | total |     | MD-MD | 0      | minutes |
| 46 | userbens | total |     | MD-NT | 0      | minutes |
| 47 | userbens | total |     | NT-CW | 13051  | minutes |
| 48 | userbens | total |     | NT-MD | 0      | minutes |
| 49 | userbens | total |     | NT-NT | 0      | minutes |
| 50 | userbens | total |     | TOTAL | 974229 | minutes |
|    |          |       |     |       |        |         |
| 51 | userbens | auto  |     | CM-CM | 0      | minutes |
| 52 | userbens | auto  |     | CW-MD | 0      | minutes |
| 53 | userbens | auto  |     | CW-NT | 0      | minutes |
|    |          |       |     |       |        |         |

- Application (continued)
  - Additional report-file contents: capping effects

```
total expenditure BASE 15385628 minutes total expenditure ALT 14297199 minutes user benefits (d expnd) BASE - ALT 1088429 minutes
```


Change in UBs from capped price changes (minutes)

| ${\tt Segment:}$ | Total   | 1     | 2      | 3      |
|------------------|---------|-------|--------|--------|
|                  |         |       |        |        |
| CW-CW            | -114199 | -7410 | -46377 | -60413 |
| CW-MD            | 0       | 0     | 0      | 0      |
| CW-NT            | 0       | 0     | 0      | 0      |
| MD-CW            | 0       | 0     | 0      | 0      |
| MD-MD            | 0       | 0     | 0      | 0      |
| MD-NT            | 0       | 0     | 0      | 0      |
| NT-CW            | 0       | 0     | 0      | 0      |
| NT-MD            | 0       | 0     | 0      | 0      |
| NT-NT            | 0       | 0     | 0      | 0      |
| Totals           | -114199 | -7410 | -46377 | -60413 |





- Application (continued)
  - Additional row|col-sum file user benefits → GIS



Visine map

# **Summit Examples**

#### Session 3

- Question on travel forecasts
- Analytical approach to an answer
- Implementation in Summit
- Results and insights





## **Notes on the Examples**

- Honolulu test-bench constructed by FTA
- FTA analyses for illustrative purposes only
  - Not exactly the Honolulu travel models
  - Not exactly the Honolulu rapid transit project
  - Not the Honolulu project forecasts
- Thanks to:

The Department of Transportation Services
City and County of Honolulu

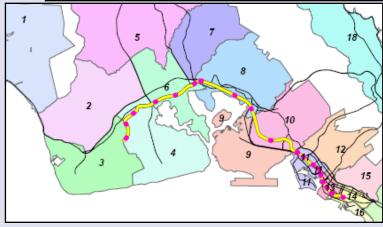
#### **Problem #1**



#### Your colleague asks:

I'm here from the mainland to write the case for the project and it's due at FTA tomorrow. I don't have anything on highway congestion changes between today and 2030. Can you help me?

#### An approach


- Compute the %Δ peak SOV times, '05→'30
  - Relative change: useful; absolute change: not
  - Cell weighted; could weight by trips (either '05 or '30)
- Report district-to-district results



```
Hway-TT.CTL
  District-to-District reports for Peak Highway Travel Times
  through SOV paths
&fnames
 freport = 'Hway-TT.rpt'
                                               !report file
 fequiv = '764to18.eqv'
                                               !zone-district equivalence file
 ftable1 = "... \land A30C0M \land skpkxxco1.b05"
                                               !Today - highway skim file
 ftable2 = '..\..\A30C0M\skpkxxo1.tno'
                                               !2030 NB - highway skim file
&END
&PARAMS
  ndists
           = 18
                                               !18 districts (maximum district number)
  nzones
         = 764
                                               !764 zones
                                                             (maximum zone number)
  softtabi = 'minutp'
                                               !input table files in minutp format
 prtegy
         = \mathbf{f}
                                               !do not print zone-district equivalence table
&END
&PAGES
  pageh = 59
                                               !page height for CourierNew, size 8
 pagew = 149
                                               !page width for CourierNew, size 8
&END
&TABLES
  t1='t101'
                                               !Today - pk period highway (SOV) travel time
  t2='t201-t101'
                                               !Delta highway travel time (2030 NB - Today)
  t3='t2/t1'
                                               !Relative IVT
EEND
&ANALYSIS
&END
&TRPT
  t=3
                                               !report table 3
  scale=100
                                               !to make percent
  tline4='Table 1: % Change PK H'way travel time'
&END
```



|      |            |        |       |      |        | _      |       | _      |        | 101    |       |        |    |    | _  | _  |    | _  |    |       |
|------|------------|--------|-------|------|--------|--------|-------|--------|--------|--------|-------|--------|----|----|----|----|----|----|----|-------|
| Perc | ent Chang  | je Hig | jhway | Тгач | el Tir | ne (20 | 030 N | o-Buil | ld - T | oday), | , Pea | k Peri |    |    |    |    |    |    |    |       |
|      | District   | 1      | 2     | 3    | 4      | 5      | 6     | 7      | 8      | 9      | 10    | 11     | 12 | 13 | 14 | 15 | 16 | 17 | 18 | Total |
| 1    | Waianae    | -4     | -31   | -31  | -29    | -38    | -27   | -25    | -13    | -8     | -7    | -5     | -5 | -5 | -5 | -4 | -4 | -4 | -8 | -11   |
| 2    | Makakilo   | -17    | -27   | -26  | -24    | -6     | -17   | -6     | 0      | 4      | 4     | 6      | 5  | 5  | 5  | 5  | 5  | 5  | 3  | 2     |
| 3    | Kapolei    | -6     | -13   | -16  | -15    | 1      | -6    | 2      | 7      | 9      | 10    | 11     | 10 | 10 | 9  | 9  | 9  | 9  | 7  | 7     |
| 4    | Ewa        | -11    | -19   | -21  | -21    | -8     | -15   | -7     | -3     | 1      | 2     | 4      | 3  | 3  | 3  | 4  | 4  | 3  | 1  | 0     |
| 5    | NCentVall  | -26    | 0     | -2   | -8     | 1      | -6    | -12    | 2      | 6      | 7     | 8      | 8  | 7  | 7  | 7  | 7  | 7  | 5  | 4     |
| 6    | Waipahu    | 2      | 12    | 11   | 3      | 8      | 9     | 15     | 13     | 13     | 14    | 15     | 14 | 13 | 12 | 12 | 12 | 11 | 10 | 11    |
| 7    | Waiawa     | -5     | 4     | 1    | -6     | 5      | -3    | -4     | 3      | 8      | 9     | 10     | 9  | 9  | 8  | 9  | 8  | 8  | 6  | 7     |
| 8    | PrlCtyAiea | 0      | 4     | 2    | -3     | 9      | -3    | 9      | 11     | 12     | 14    | 15     | 13 | 12 | 11 | 11 | 10 | 9  | 7  | 9     |
| 9    | AirportPH  | -2     | 2     | 0    | -6     | 2      | -6    | 1      | 3      | 4      | 4     | 10     | 7  | 7  | 6  | 6  | 6  | 5  | 3  | 3     |
| 10   | SItLk Hlwa | -2     | 2     | 0    | -6     | 1      | -6    | 0      | 3      | 2      | 3     | 7      | 4  | 4  | 4  | 4  | 5  | 3  | 2  | 2     |
| 11   | lwilei     | -2     | 2     | 0    | -7     | 1      | -7    | -1     | 4      | 5      | 5     | 7      | 7  | 7  | 5  | 7  | 5  | 3  | 2  | 1     |
| 12   | Klhi Nnu   | -2     | 1     | -1   | -7     | 0      | -7    | -1     | 3      | 2      | 4     | 7      | 5  | 7  | 5  | 6  | 6  | 2  | 1  | 1     |
| 13   | Core       | -1     | 2     | 0    | -6     | 1      | -6    | 0      | 3      | 4      | 4     | 4      | 3  | 4  | 3  | 4  | 3  | -1 | 1  | 0     |
| 14   | Makiki     | -1     | 2     | 1    | -4     | 2      | -4    | 1      | 4      | 4      | 5     | 4      | 6  | 2  | 2  | 5  | 4  | 3  | 4  | 2     |
| 15   | Manoa      | -1     | 2     | 1    | -4     | 2      | -4    | 1      | 4      | 4      | 5     | 8      | 7  | 5  | 4  | 3  | 4  | 0  | 3  | 2     |
| 16   | Waikiki    | -1     | 2     | 1    | -4     | 1      | -3    | 1      | 3      | 4      | 4     | 3      | 5  | 2  | 1  | 4  | 1  | 1  | 3  | 1     |
| 17   | EHonolulu  | 0      | 3     | 1    | -3     | 2      | -2    | 2      | 4      | 4      | 5     | 6      | 5  | 5  | 4  | 5  | 4  | 3  | 3  | 2     |
| 18   | Windward   | -2     | 1     | 0    | -4     | 0      | -4    | 0      | 2      | 3      | 3     | 3      | 2  | 3  | 3  | 3  | 3  | 2  | -1 | 1     |
|      | Totals     | -4     | 0     | -2   | 0      | -1     | 0     | -2     | 0      | 4      | 0     | 6      | 0  | 6  | 0  | 6  | 0  | 4  | 0  | 2     |



#### **Observations**

- Roadway improvements?
  - Growing areas of SW Oahu
  - To/from Waianae coast
- More congestion?
  - East of Pearl Harbor



- Your colleague returns:
   Um, I need something about current congestion too.
- A revised approach
  - For 2005
    - Compute peak delay vs. offpeak highway times
    - Compute percent peak delay
  - While we are at it, do that for 2030 too
  - Compute percent change in peak delay, 2005-2030

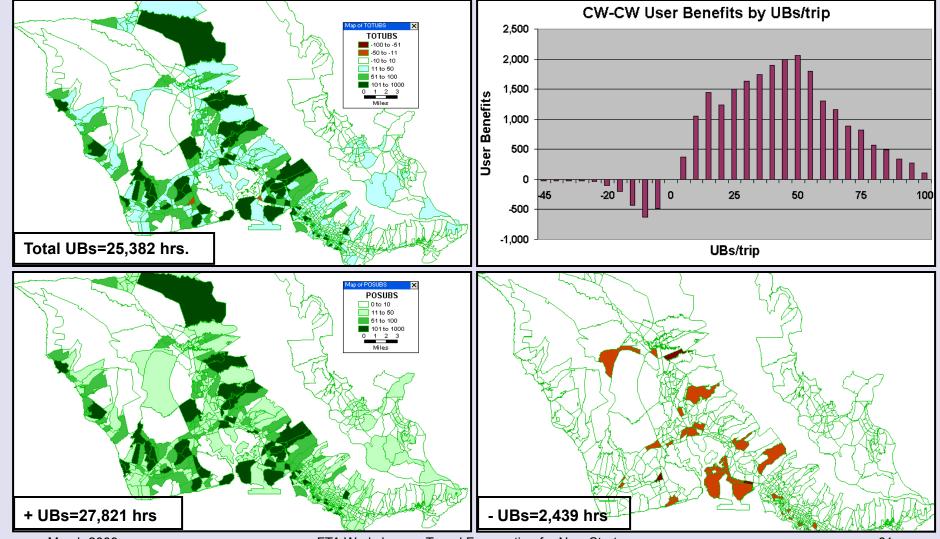
#### **Problem #2**



#### Your colleague asks:

Your Visine maps are all green; so all of your impacts seem to be positive. Have you ever checked for negative impacts that are hiding behind the positives?

#### An approach


- Flag z-to-z cells with +UBs & -UBs
- Develop separate z-to-z tables for +UBs & -UBs
- Report them for presenting frequency distribution and thematic maps.



```
&FNAMES
  ftable1='..\..\tsm-new\s4mc\userbwk.TSM'
                                                 !TSM - P&Q file from MC model
 ftable2='..\..\bld-new\s4mc\userbwk.MSL'
                                                 !BLD - P&Q file from MC model
 fresums='prob#2-t.res'
                                                 !row/col sums
  pqfiles=1,2
                                                 !ftable1 & ftable2 are P&Q files
SEND
&TABLES
                                                 !Boolean positive Z-Z CW-CW UBs
  t2='u441>0'
  t3='u441<0'
                                                 !Boolean negative Z-Z CW-CW UBs
  t4='u441*t2'
                                                 !Positive CW-CW UBs
  t5='u441*t3'
                                                 !Negative CW-CW UBs
  t11='u141'
                                                 !Base CW-CW UBs,0-Car HH
  t12='u241'
                                                 !Base CW-CW UBs,1-Car HH
  t13='u341'
                                                 !Base CW-CW UBs,2-Car HH
  t21='u181'
                                                 !delta transit UBs/trip,O-Car HH
                                                 !delta transit UBs/trip,1-Car HH
  t22='u281'
  t23='u381'
                                                 !delta transit UBs/trip,2-Car HH
&END
&ANALYSIS
                                                 !TLF: user benefits by UBs/trip,0-Car HH
  tlf1=11,21
  tlf2=12,22
                                                 !TLF: user benefits by UBs/trip,1-Car HH
  tlf3=13,23
                                                 !TLF: unit benefits by UBs/trip,2-Car HH
  intvltlf=5.0
                                                 !5-minute intervals for the TLF
  trcsums=4,5
                                                 !row/col sums tables 4 & 5
&END
&TRPT
                                                 & TRP
  t=4
                                                   t=5
 places=5
                                                   places=5
  scale=0.016667
                                                   scale=0.016667
  tline4='Report 1-1: HBW +UBs(hrs)'
                                                   tline4='Report 1-2: HBW -UBs(hrs)'
&END
```

#### Results









|               |      |     |     |      |     |         |      |             |        |        | 100    |        |     |            |           |          |           |           |            |              |
|---------------|------|-----|-----|------|-----|---------|------|-------------|--------|--------|--------|--------|-----|------------|-----------|----------|-----------|-----------|------------|--------------|
| a::_          |      |     |     |      |     |         | Ke   | port 1      |        |        |        | rs), H |     |            |           |          |           |           |            |              |
| Origin        |      |     | _   |      |     | _       | _    | _           |        |        |        | Distri |     |            |           |          |           |           |            |              |
| District      | !    | 1   | 2   | 3    | 4   | 5       | -6   | 7           | 8      | 9      | 10     | 11     | 12  | 13         | 14        | 15       | 16        | 17        | 18         | Total        |
| 1 Waianae     | !    | 39  | 19  | 91   | 24  | 38      | 57   | 21          | 106    | 185    | 206    | 180    | 77  | 571        | 245       | 264      | 183       | 111       | 28 I       | 2444         |
| 2 Makakilo    | !    | 14  | 25  | 168  | 51  | 24      | 45   | 11          | 68     | 68     | 93     | 197    | 37  | 255        | 110       | 125      | 169       | 57        | 19         | 1538         |
| 3 Kapolei     | !    | 27  | 38  | 243  | 85  | 39      | 84   | 23          | 101    | 93     | 108    | 226    | 50  | 364        | 141       | 149      | 251       | 67        | 21         | 2110         |
| 4 Ewa         | ı    | 9   | 43  | 442  | 224 | 71      | 111  | 37          | 188    | 212    | 277    | 644    | 114 | 769        | 336       | 380      | 498       | 164       | 46         | 4566         |
| 5 NCentVall   | ı    | 22  | 31  | 275  | 103 | 446     | 289  | 151         | 372    | 276    | 381    | 321    | 139 | 898        | 405       | 427      | 284       | 182       | 53 J       | 5053         |
| 6 Waipahu     | ı    | 3   | 16  | 138  | 71  | 73      | 74   | 46          | 194    | 115    | 187    | 148    | 62  | 394        | 268       | 189      | 363       | 79        | 21         | 2440         |
| 7 Waiawa      | ı    | 7   | 17  | 167  | 54  | 96      | 137  | 14          | 146    | 78     | 135    | 103    | 40  | 304        | 188       | 113      | 292       | 54        | 18         | 1962         |
| 8 PrlCtyAiea  | ı    | 3   | 6   | 65   | 16  | 26      | 78   | 44          | 60     | 43     | 292    | 154    | 49  | 335        | 109       | 78       | 73        | 39        | 27         | 1494         |
| 9 AirportPH   | ı    | 1   | 0   | 2    | 1   | 1       | 12   | 7           | 24     | 14     | 71     | 10     | 5   | 21         | 7         | 3        | 3         | 1         | 1          | 184          |
| 10 SltLk Hlwa | ı    | 1   | 3   | 29   | 9   | 18      | 49   | 26          | 291    | 157    | 211    | 243    | 75  | 350        | 94        | 36       | 52        | 24        | 23         | 1691         |
| 11 Iwilei     | ı    | 0   | 0   | 4    | 0   | 3       | 6    | 3           | 29     | 6      | 97     | 14     | 9   | 85         | 66        | 9        | 24        | 8         | 4          | 367          |
| 12 Klhi Nnu   | ı    | 1   | 0   | 9    | 3   | 6       | 15   | 6           | 81     | 34     | 176    | 73     | 8   | 171        | 112       | 18       | 44        | 10        | 2          | 771          |
| 13 Core       | 1    | 0   | 0   | 7    | 2   | 8       | 10   | 5           | 47     | 29     | 174    | 126    | 31  | 48         | 70        | 21       | 45        | 24        | 1          | 647          |
| 14 Makiki     | 1    | 0   | 0   | 6    | 1   | 4       | 5    | 2           | 26     | 23     | 77     | 95     | 13  | 150        | 14        | 9        | 3         | 11        | 1          | 442          |
| 15 Manoa      | 1    | 0   | 0   | 5    | 1   | 3       | 4    | 1           | 19     | 13     | 62     | 55     | 7   | 49         | 11        | 5        | 6         | 8         | 1          | 248          |
| 16 Waikiki    | ı    | 0   | 0   | 2    | 0   | 1       | 1    | 1           | 8      | 1      | 30     | 17     | 1   | 9          | 2         | 4        | 2         | 24        | 0          | 102          |
| 17 EHonolulu  | 1    | 1   | 1   | 13   | 5   | 3       | 12   | 4           | 42     | 22     | 83     | 58     | 14  | 107        | 61        | 28       | 70        | 45        | 5 J        | 574          |
| 18 Windward   | 1    | 1   | 2   | 26   | 9   | 14      | 28   | 14          | 116    | 69     | 212    | 114    | 16  | 132        | 155       | 97       | 137       | 24        | 21         | 1189         |
| Totals        | 1    | 128 | 204 | 1691 | 659 | 875     | 1017 | 415         | 1918   | 1438   | 2872   | 2776   | 746 | 5011       | 2395      | 1955     | 2498      | 933       | 292        | 27821        |
|               |      |     |     |      |     |         | Re   | port 1      | -2: To | tal -  | VBs (h | rs), H | BW  |            |           |          |           |           |            |              |
| Origin        |      |     |     |      |     |         |      |             |        | Destin | ation  | Distri | ct  |            |           |          |           |           |            |              |
| 1 Waianae     | 1    | -10 | 0   | -2   | 0   | 0       | 0    | 0           | 0      | 0      | 0      | 0      | 0   | 0          | 0         | 0        | 0         | 0         | 0          | -12          |
| 2 Makakilo    | 1    | 0   | 0   | -4   | -7  | 0       | 0    | 0           | 0      | 0      | 0      | 0      | 0   | 0          | 0         | 0        | 0         | 0         | 0          | -11          |
| 3 Kapolei     | 1    | -2  | 0   | -10  | 9   | 0       | -1   | 0           | 0      | 0      | 0      | 0      | 0   | 0          | 0         | 0        | 0         | 0         | 0          | -21          |
| 4 Ewa         | 1    | -8  | 13  | -122 | -90 | -1      | -19  | -1          | 0      | 0      | 0      | 0      | 0   | 0          | 0         | 0        | 0         | 0         | 0          | -253         |
| 5 NCentVall   | 1    | -1  | Q   | -2   | -4  | -143    | -21  | -15         | -6     | -1     | 0      | 0      | 0   | 0          | 0         | 0        | 0         | 0         | 0          | -193         |
| 6 Waipahu     | ı    | -2  | -3  | -36  | -46 | -22     | -34  | -6          | -2     | 0      | 0      | 0      | 0   | 0          | 0         | 0        | 0         | 0         | 0          | -156         |
| 7 Waiawa      | 1    | -1  | -1  | -4   | -12 | -60     | -38  | -5          | -5     | -3     | 0      | 0      | 0   | -1         | 0         | 0        | 0         | 0         | 0          | -132         |
| 8 PrlCtyAiea  | 1    | -2  | 0   | -4   | -41 | -3      | -19  | -2          | -49    | -55    | -10    | -1     | 0   | -1         | 0         | 0        | 0         | 0         | -1         | -158         |
| 9 AirportPH   | 1    | 0   | 0   | 0    | 0   | <u></u> | -2   | ノ- <b>1</b> | -1/6   | -35    | -7     | -14    | -2  | -2         | 0         | 0        | 0         | 0         | 0          | -79          |
| 10 SltLk Hlwa | 1    | 0   | 0   | 0    | 0   | 0       | 0    | 0           | (-9    | -18    | -31    | -2     | Q.  | -2         | 0         | 0        | 0         | -1        | 0          | -64          |
| 11 Iwilei     | 1    | 0   | 0   | 0    | 0   | -1      | 0    | -1          | 7/3    | -55    | -15    | -7     | -1  | -9         | -4        | -1       | -3        | -3        | -1 I       | -108         |
| 12 Klhi Nnu   | ı    | 0   | 0   | 0    | 0   | -1      | 0    | -1          | -11    | -53    | -6     | -22    | -1  | -25        | -9        | -1       | -3        | -3        | 0 1        | -137         |
| 13 Core       | ı    | 0   | 0   | 0    | 0   | -3      | 0    | -1          | -10    | -51    | -6     | -20    | -9  | -50        | -22       | -3       | -21       | -20       | -4 I       | -219         |
| 14 Makiki     | 1    | 0   | 0   | 0    | 0   | -3      | 0    | -1          | -5     | -19    | -3     | -20    | -16 | -88        | -10       | -3       | -16       | -17       | -4         | -205         |
| 15 Manoa      | ı    | 0   | 0   | 0    | 0   | -2      | 0    | 0           | -3     | -16    | -3     | -12    | -7  | -29        | -4        | -1       | -1        | -3        | 0          | -81          |
| 16 Waikiki    |      |     | n   | 0    | Λ   | -1      | -1   | 0           | -2     | -10    | -1     | -13    | -14 | -151       | -34       | -3       | -10       | -8        | -2 I       | -252         |
|               | 1    | 0   | v   | •    | •   | _       |      |             |        |        |        |        |     |            |           |          |           |           |            |              |
| 17 EHonolulu  | <br> | -1  | 0   | 0    | 0   | -2      | 0    | -1          | -4     | -19    | -5     | -24    | -8  | -94        | -23       | -4       | -14       | -23       | -2 I       | -222         |
|               | <br> | •   | •   | 0    | •   | _       | _    | _           | _      |        | _      |        |     | -94<br>-51 | -23<br>-8 | -4<br>-1 | -14<br>-2 | -23<br>-5 | -2  <br>-4 | -222<br>-136 |





- Observations
  - Positive totals can include lots of negatives
    - Thematic maps
    - D-to-D reports
    - Separation of positives and negatives
    - Frequency distribution to check for significant numbers
    - Thematic maps and D-to-D reports to follow up, if magnitude of negatives is worrisome



By the way, what happened with Δ transit trips?

Summary of delta transit trips between mode choice output Minutp files for build and base alternatives

|               |     |    |     |      |     | Repor | t 1-1 | .: De1 | ta WA | tra   | sit t | rips   | (BLD- | TSM) |      |      |      |     |     |       |
|---------------|-----|----|-----|------|-----|-------|-------|--------|-------|-------|-------|--------|-------|------|------|------|------|-----|-----|-------|
| Production    |     |    |     |      |     |       |       |        |       | Attra | ction | n Dist | rict  |      |      |      |      |     |     |       |
| District      | -   | 1  | 2   | 3    | 4   | 5     | 6     | 7      | 8     | 9     | 10    | 11     | 12    | 13   | 14   | 15   | 16   | 17  | 18  | Total |
|               | -+- |    |     |      |     |       |       |        |       |       |       |        |       |      |      |      |      |     |     | +     |
| 1 Waianae     | - 1 | 22 | 17  | 63   | 23  | 47    | 55    | 25     | 92    | 175   | 187   | 150    | 63    | 468  | 193  | 222  | 163  | 97  | 34  | 2096  |
| 2 Makakilo    | - 1 | 10 | 27  | 159  | 39  | 27    | 34    | 10     | 55    | 51    | 84    | 124    | 27    | 227  | 77   | 93   | 187  | 50  | 21  | 1302  |
| 3 Kapolei     | - 1 | 15 | 29  | 177  | 50  | 42    | 69    | 12     | 89    | 75    | 91    | 137    | 42    | 251  | 95   | 103  | 210  | 64  | 23  | 1574  |
| 4 Ewa         | - 1 | -6 | 13  | 208  | 129 | 80    | 60    | 27     | 149   | 173   | 228   | 395    | 81    | 604  | 233  | 287  | 467  | 121 | 47  | 3296  |
| 5 NCentVall   | - 1 | 20 | 38  | 282  | 84  | 323   | 241   | 137    | 336   | 277   | 347   | 270    | 129   | 796  | 312  | 354  | 264  | 159 | 54  | 4423  |
| 6 Waipahu     | - 1 | 1  | 16  | 71   | 21  | 30    | 9     | 33     | 148   | 92    | 164   | 108    | 53    | 282  | 203  | 149  | 368  | 73  | 22  | 1843  |
| 7 Waiawa      | -   | 5  | 12  | 134  | 31  | 25    | 54    | 2      | 104   | 58    | 119   | 74     | 31    | 214  | 141  | 83   | 284  | 40  | 19  | 1430  |
| 8 PrlCtyAiea  | ı   | 4  | 8   | 58   | 2   | 9     | 39    | 27     | -15   | -39   | 234   | 135    | 36    | 243  | 83   | 63   | 64   | 41  | 21  | 1013  |
| 9 AirportPH   | -   | 2  | 0   | 3    | 2   | 1     | 7     | 5      | -1    | -38   | 59    | -3     | -1    | 12   | 4    | 3    | 0    | 3   | -1  | 57    |
| 10 SltLk Hlwa | ı   | 0  | 4   | 28   | 7   | 22    | 47    | 22     | 228   | 107   | 183   | 224    | 71    | 274  | 75   | 37   | 50   | 17  | 24  | 1420  |
| 11 Iwilei     | - 1 | 0  | 2   | 5    | 0   | 3     | 9     | -4     | 21    | -36   | 76    | 7      | 8     | 82   | 51   | 4    | 18   | 2   | -1  | 247   |
| 12 Klhi Nnu   | - 1 | 1  | 2   | 8    | 3   | 9     | 4     | 8      | 60    | -17   | 187   | 59     | 6     | 129  | 89   | 17   | 30   | 20  | -5  | 610   |
| 13 Core       | 1   | 0  | 0   | 17   | -2  | -3    | 8     | -2     | 21    | -26   | 143   | 108    | 20    | 5    | 46   | 14   | 17   | 6   | 1   | 373   |
| 14 Makiki     | 1   | 0  | -1  | 4    | -1  | 4     | 12    | 3      | 15    | 3     | 61    | 60     | 1     | 62   | 8    | 1    | -16  | -3  | -1  | 212   |
| 15 Manoa      | - 1 | 0  | 0   | 3    | 1   | 5     | 5     | 3      | 10    | -1    | 61    | 39     | 4     | 10   | 1    | 12   | 2    | 11  | -4  | 162   |
| 16 Waikiki    | - 1 | 0  | 0   | 1    | -3  | -1    | 1     | 2      | 10    | -9    | 26    | 1      | -8    | -121 | -44  | 6    | -5   | 13  | -3  | -134  |
| 17 EHonolulu  | - 1 | -1 | 2   | 9    | 6   | -1    | 16    | 4      | 35    | 22    | 65    | 41     | -5    | 4    | 19   | 40   | 55   | 13  | 2   | 326   |
| 18 Windward   | 1   | 2  | -1  | 30   | 9   | 16    | 21    | 17     | 122   | 42    | 227   | 88     | 12    | 66   | 131  | 88   | 134  | 15  | -2  | 1017  |
|               | -+- |    |     |      |     |       |       |        |       |       |       |        |       |      |      |      |      |     |     |       |
| Totals        | 1   | 75 |     | 1260 |     | 638   |       | 331    |       | 909   |       | 2017   |       | 3608 |      | 1576 |      | 742 |     | 21267 |
|               | 1   |    | 168 |      | 401 |       | 691   |        | 1479  |       | 2542  |        | 570   |      | 1717 |      | 2292 |     | 251 | l     |
|               |     |    |     |      |     |       |       |        |       |       |       |        |       |      |      |      |      |     |     |       |

| _    | UN         |   |      |     |      |      |      |        |        | 7111  |        | M     |        |        |      |      |      |      |      |      |     |       |   |
|------|------------|---|------|-----|------|------|------|--------|--------|-------|--------|-------|--------|--------|------|------|------|------|------|------|-----|-------|---|
| II _ |            |   |      |     |      |      | Kej  | port : | 1-2: 1 |       | ive De |       |        |        | rbs  |      |      |      |      |      |     |       |   |
|      | duction    |   |      |     |      |      |      |        |        |       | Attrac |       |        |        |      |      |      |      |      |      |     | '     | ) |
|      | trict      | н | 1    | 2   | 3    | 4    | 5    | 6      | 7      | 8     | 9      | 10    | 11     | 12     | 13   | 14   | 15   | 16   | 17   |      |     | Total |   |
| _    | Waianae    | ı | 51   | 33  | 141  | 55   | 63   | 83     | 30     | 110   | 181    | 194   | 188    | 88     | 545  | 226  | 237  | 184  | 130  | 45   | ı   | 2584  |   |
| 2    | Makakilo   | ı | 26   | 30  | 198  | 67   | 35   | 52     | 13     | 63    | 54     | 89    | 138    | 38     | 255  | 100  | 102  | 196  | 61   | 24   | 1   | 1541  |   |
| 3    | Kapolei    | 1 | 48   | 53  | 279  | 120  | 56   | 117    | 24     | 108   | 85     | 96    | 168    | 53     | 312  | 112  | 110  | 228  | 71   | 32   | ı   | 2072  |   |
| 4    | Ewa        | ı | 30   | 57  | 456  | 297  | 113  | 149    | 43     | 177   | 191    | 240   | 439    | 113    | 698  | 276  | 316  | 507  | 170  | 67   | ı   | 4339  |   |
| 5    | NCentVall  | Т | 35   | 42  | 358  | 130  | 658  | 344    | 204    | 416   | 293    | 371   | 324    | 169    | 949  | 382  | 385  | 298  | 214  | 88   | ı   | 5660  |   |
| 6    | Waipahu    | 1 | 21   | 41  | 222  | 132  | 151  | 136    | 75     | 219   | 112    | 179   | 139    | 68     | 400  | 247  | 160  | 422  | 96   | 34   | ı   | 2854  |   |
| 7    | Waiawa     | 1 | 19   | 23  | 181  | 68   | 131  | 127    | 18     | 154   | 68     | 125   | 93     | 44     | 266  | 168  | 91   | 298  | 59   | 29   | 1   | 1962  |   |
| 8    | PrlCtyAiea | 1 | 9    | 15  | 140  | 53   | 76   | 139    | 76     | 195   | 63     | 288   | 194    | 82     | 396  | 117  | 76   | 88   | 61   | 53   | 1   | 2121  |   |
| 9    | AirportPH  | Т | 2    | 0   | 4    | 2    | 5    | 20     | 12     | 40    | 12     | 72    | 22     | 8      | 51   | 8    | 6    | 8    | 6    | 3    | 1   | 281   |   |
| 10   | SltLk Hlwa | 1 | 0    | 5   | 35   | 11   | 33   | 62     | 32     | 291   | 136    | 237   | 274    | 113    | 368  | 105  | 45   | 69   | 44   | 40   | 1   | 1900  |   |
| 11   | Iwilei     | 1 | 0    | 2   | 12   | 3    | 7    | 19     | 6      | 70    | 27     | 125   | 69     | 78     | 257  | 135  | 31   | 64   | 34   | 24   | 1   | 963   |   |
| 12   | Klhi Nnu   | 1 | 2    | 3   | 15   | 7    | 16   | 21     | 16     | 147   | 67     | 246   | 234    | 89     | 483  | 202  | 73   | 101  | 75   | 47   | 1   | 1844  |   |
| 13   | Core       | ı | 0    | 0   | 27   | 3    | 11   | 21     | 6      | 86    | 50     | 204   | 292    | 155    | 313  | 257  | 96   | 159  | 138  | 47   | ı   | 1865  |   |
| 14   | Makiki     | 1 | 0    | 0   | 14   | 1    | 13   | 15     | 5      | 63    | 63     | 130   | 217    | 123    | 551  | 148  | 115  | 134  | 213  | 22   | 1   | 1827  |   |
| 15   | Manoa      | 1 | 0    | 0   | 8    | 4    | 10   | 15     | 6      | 46    | 32     | 93    | 140    | 101    | 289  | 165  | 69   | 97   | 128  | 25   | ı   | 1228  |   |
| 16   | Waikiki    | i | 0    | 0   | 5    | 0    | 3    | 7      | 3      | 26    | 24     | 47    | 66     | 39     | 161  | 76   | 57   | 49   | 114  | 12   | i i | 689   |   |
| 17   | EHonolulu  | 1 | 3    | 3   | 21   | 9    | 7    | 22     | 10     | 94    | 79     | 156   | 229    | 157    | 604  | 416  | 225  | 272  | 385  | 39   | 1   | 2731  |   |
| 18   | Windward   | i | 5    | 3   | 55   | 18   | 33   | 45     | 32     | 229   | 141    | 326   | 301    | 192    | 578  | 281  | 149  | 263  | 112  | 193  | i   | 2956  |   |
|      | Totals     | ï | 251  | 310 | 2171 | 980  | 1421 | 1394   | 611    | 2534  | 1678   | 3218  | 3527   | 1710   | 7476 | 3421 | 2343 | 3437 | 2111 | 824  | 1 8 | 39417 |   |
|      |            |   |      |     |      |      | Re   | port   | 1-3:   | Negat | tive I | elta  | Trans  | sit Tı | rips |      |      |      |      |      |     |       |   |
| Pr   | oduction   |   |      |     |      |      |      | _      |        | _     | Attra  | ction | n Dist | trict  | _    |      |      |      |      |      |     |       |   |
| 1    | Waianae    | ı | -29  | -16 | -78  | -32  | -16  | -28    | -5     | -18   | -6     | -7    | -38    | -25    | -77  | -33  | -15  | -21  | -33  | -11  | ı   | -488  |   |
| 2    | Makakilo   | ı | -16  | -3  | -39  | -28  | -8   | -18    | -3     | -8    | -3     | -5    | -14    | -11    | -28  | -23  | -9   | -9   | -11  | -3   | ı   | -239  |   |
| 3    | Kapolei    | 1 | -33  | -24 | -102 | -70  | -14  | -48    | -12    | -19   | -10    | -5    | -31    | -11    | -61  | -17  | -7   | -18  | -7   | -9   | ı   | -498  |   |
| 4    | Ewa        | 1 | -36  | -44 | -248 | -168 | -33  | -89    | -16    | -28   | -18    | -12   | -44    | -32    | -94  | -43  | -29  | -40  | -49  | -20  | 1 - | -1043 |   |
| 5    | NCentVall  | 1 | -15  | -4  | -76  | -46  | -335 | -103   | -67    | -80   | -16    | -24   | -54    | -40    | -153 | -70  | -31  | -34  | -55  | -34  | 1 - | -1237 |   |
| 6    | Waipahu    | ī | -20  | -25 | -151 | -111 | -121 | -127   | -42    | -71   | -20    | -15   | -31    | -15    | -118 | -44  | -11  | -54  | -23  | -12  | 1 - | -1011 |   |
| 7    | Waiawa     | 1 | -14  | -11 | -47  | -37  | -106 | -73    | -16    | -50   | -10    | -6    | -19    | -13    | -52  | -27  | -8   | -14  | -19  | -10  | 1   | -532  |   |
| 8    | PrlCtyAiea | 1 | -5   | -7  | -82  | -51  | -67  | -100   | -49    | -210  | -102   | -54   | -59    | -46    | -153 | -34  | -13  | -24  | -20  | -32  | 1 - | -1108 |   |
| 9    | AirportPH  | i | 0    | 0   | -1   | 0    | -4   | -13    | -7     | -41   | -50    | -13   | -25    | -9     | -39  | -4   | -3   | -8   | -3   | -4   | i   | -224  |   |
|      | SltLk Hlwa | i | 0    | -1  | -7   | -4   | -11  | -15    | -10    | -63   | -29    | -54   | -50    | -42    | -94  | -30  | -8   | -19  | -27  | -16  | i   | -480  |   |
| 11   | Iwilei     | Ĺ | 0    | 0   | -7   | -3   | -4   | -10    | -10    | -49   | -63    | -49   | -62    | -70    | -175 | -84  | -27  | -46  | -32  | -25  | i   | -716  |   |
| 12   | Klhi Nnu   | i | -1   | -1  | -7   | -4   | -7   | -17    | -8     | -87   | -84    | -59   | -175   | -83    | -354 | -113 | -56  | -71  | -55  | -52  | i - | -1234 |   |
|      | Core       | Í | 0    | 0   | -10  | -5   | -14  | -13    | -8     | -65   | -76    | -61   | -184   |        | -308 |      | -82  | -142 | -132 |      | -   | -1492 |   |
| 14   | Makiki     | i | 0    | -1  | -10  | -2   | -9   | -3     | -2     | -48   | -60    | -69   | -157   | -122   | -489 | -140 | -114 | -150 | -216 | -23  | 1 . | -1615 |   |
| 15   | Manoa      | i | 0    | 0   | -5   | -3   | -5   | -10    | -3     | -36   | -33    | -32   | -101   |        | -279 |      | -57  |      | -117 | -29  | •   | -1066 |   |
|      | Waikiki    | í | 0    | 0   | -4   | -3   | -4   | -6     | -1     | -16   | -33    | -21   | -65    |        | -282 |      | -51  |      | -101 | -15  | -   | -823  |   |
|      | EHonolulu  | i | -4   | -1  | -12  | -3   | -8   | -6     | -6     | -59   | -57    |       | -188   |        | -600 |      |      |      |      |      | •   | -2405 |   |
|      | Windward   | i | -3   | -4  | -25  | -9   | -17  | -24    | -15    | -107  | -99    |       |        |        | -512 |      |      | -129 |      | -195 | -   |       |   |
|      | Totals     | i | -176 | _   |      | -    | -783 |        |        |       |        |       |        |        |      |      |      |      |      | -573 | -   |       |   |
|      |            | - | 2.0  |     |      | 0.0  |      |        | 200    | 2000  |        | 0.0   |        |        | 3000 |      |      |      |      | 5.5  |     |       |   |





- Symptoms of odd delta-transit-trip results
  - 21,267 net gain = 39,417 gain 18,150 loss
  - Checked MinUTP set-ups for errors → none
  - Checked Summit set-up for errors → none
  - Checked networks for bad service changes → few
  - What's happening? Answer:
- Moral(s) of the story
  - Forecasts are like a box of chocolates: you never know what you're going to get, so you must look!

#### **Problem #3**



#### Your colleague asks:

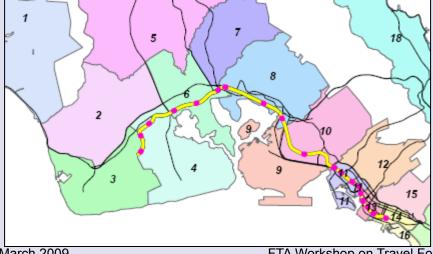
You sure changed the bus system a lot in the rail alternative. Are you sure that the user benefits are from the project and not from the bus changes?

#### An approach

- Identify z-to-z pairs with a rail-involved path
- Identify z-to-z pairs without rail-involved path
- Sum the UBs for the rail-involved pairs
- Sum the UBs for the no-rail-involved pairs
- Separate the +UBs from -UBs



```
&FNAMES
 ftable1='..\..\tsm-new\s4mc\userbwk.TSM'
                                                  !TSM - P&O file from MC model
 ftable2='..\..\bld-new\s4mc\userbwk.MSL'
                                                  !BLD - P&Q file from MC model
 ftable3='..\..\bld-new\s3tpth\skamxxfq.MSL'
                                                  !BLD - Transit Skim file
  fddub='Prob#3.d2d'
                                                  !District-to-District values for sum
  frcub='Prob#3.rcu'
                                                  !Standard user benefit tables
 pqfiles=1,2
&END
&TABLES
                                                  !Total UBs
  t1='u450'
                                                  !Boolean, Rail in path
  t2='t304>0'
  t3='t304=0'
                                                  !Boolean, rail not in path
                                                  !Boolean, + VBs
  t4='t1>0'
                                                  !Boolean, - VBs
  t5='t1<0'
  t11='t1*t4'
                                                  !+ UBS
  t12='t1*t5'
                                                  I - UBs
                                                  !+ UBS w/ rail in path
  t13='t2*t11'
                                                  !- UBs w/ rail in path
  t14='t2*t12'
                                                  !+UBs wo rail in path
  t15='t11-t13'
  t16='t12-t14'
                                                  !-UBs wo rail in path
  t21='t13/t11'
                                                  !% +Rail UBs
  t22='t14/t12'
                                                  !% -Rail UBs
&END
```




|    | 1        | 2  | 3   | 4   | 5   | 6  | 7   | 8  | 9   | 10  | 11 | 12 | 13 | 14  | 15    | 16       | 17      | 18      |
|----|----------|----|-----|-----|-----|----|-----|----|-----|-----|----|----|----|-----|-------|----------|---------|---------|
| 1  | 39       | 18 | 91  | 6   | -   | -  | -   | -  | -   | -   | -  | -  | -  | Leg | ends  |          |         |         |
| 2  | 12       | 24 | 153 | 13  | -   | -  | -   | -  | -   | -   | -  | -  | -  |     | No    | nRail +U | IB =0   |         |
| 3  | 27       | 38 | 243 | 40  | -   | -  | -   | -  | -   | -   | -  | -  | -  |     | , No  | nRail +U | B =1-75 | hrs     |
| 4  | 2        | 19 | 221 | 163 | -   | 18 | -   | -  | -   | -   | -  | -  | -  |     | "No   | nRail +U | Bs=75-  | 150 hrs |
| 5  | -        | -  | 1   | 1   | 437 | 36 | 136 | 47 | -   | -   | -  | -  | -  |     | ". No | nRail +U | Bs >150 | O hrs   |
| 6  | 1        | -  | 3   | 22  | 28  | 15 | 1   | 1  | -   | -   | -  | -  | -  | -   | -     | -        | -       | -       |
| 7  | -        | -  | -   | 3   | 94  | 7  | 14  | 4  | -   | -   | -  | -  | -  | -   | -     | -        | -       | -       |
| 8  | -        | -  | -   | 1   | 22  | 7  | 4   | 12 | 9   | 4   | -  | -  | -  | -   | -     | -        | -       | -       |
| 9  | -        | -  | -   | -   | -   | 1  | -   | 19 | 14  | 47  | 1  | -  | -  | -   | -     | -        | -       | -       |
| 10 | -        | -  | -   | -   | -   | -  | -   | 14 | 151 | 150 | 7  | 6  | -  | -   | -     | -        | -       | -       |
| 11 | -        | -  | -   | -   | 1   | -  | -   | -  | -   | 24  | 1  | 1  | 4  | -   | 1     | -        | -       | -       |
| 12 | -        | -  | -   | -   | 1   | -  | -   | -  | 2   | 59  | 3  | 3  | 17 | -   | 1     | -        | 2       | 2       |
| 13 | -        | -  | -   | -   | -   | -  | -   | -  | 1   | 26  | 1  | 2  | 9  | 1   | 2     | 3        | 6       | 1       |
| 14 | -        | -  | -   | -   | -   | -  | -   | -  | -   | 6   | -  | 1  | 6  | 14  | 9     | 3        | 11      | -       |
| 15 |          | -  | -   | -   | -   | -  | -   | -  | -   | 10  | 1  | 2  | 4  | 7   | 5     | 4        | 8       | 1       |
| 16 | -        | -  | -   | -   | -   | -  | -   | -  | -   | 7   | -  | -  | 1  | 2   | 4     | 2        | 24      | -       |
| 17 | -        | -  | -   | -   | -   | -  | -   | 1  | 4   | 8   | 7  | 7  | 29 | 61  | 28    | 70       | 45      | 5       |
| 18 | <u> </u> | -  | -   | -   | 2   | -  | -   | 1  | 4   | 28  | 6  | 9  | 13 | 2   | 1     | 1        | 5       | 21      |



#### Results

- + Rail UBs = 24,441 hrs
- Rail UBs = -2,413 hrs
- + Non-rail UBs = 3,119 hrs
- Non-rail UBs = -2,219 hrs



#### **Observations**

- Feeder buses to rail terminal?
- Long-distance buses from the Central Valley (district #5)
- Better bus (feeder bus?) connections between districts 10 and 9



#### Your colleague continues:

Just because you have a rail-involved path for a zone-pair, that does not mean it is actually causing the benefits. The benefits could be from the bus path.

#### A revised approach

- Include the mode choice output trip table
- Test for rail share of transit trips > 50%
- Test whether results change significantly with 30%, 70%

#### **Problem #4**



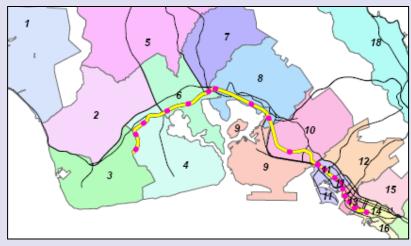
#### Your colleague whines:

Gee, you've got benefits everywhere. I'm trying to focus on the important stuff. Can't you highlight the travelers whose lives would be significantly changed by the project?

#### An approach

- Flag z-to-z cells with UB/trip outside of ±30 minutes.
- Use flags to separate out UBs caused by ±30 min. Δs
- Report and compare large UBs with the total UBs.




| &I NAMES                    |                                                     |
|-----------------------------|-----------------------------------------------------|
| ftable1='\\tsm-new\s4mc\use | rbwk.TSM' !P&Q file from MC model                   |
| ftable2='\\bld-new\s4mc\use | rbwk.MSL' !P&Q file from MC model                   |
| & END                       |                                                     |
| &TABLES                     |                                                     |
| t1='u441'                   | !CWCW UBs - total                                   |
| t2='u141'                   | !CWCW UBs - O-Car HH                                |
| t3='u241'                   | !CWCW UBs - 1-Car HH                                |
| t4='u341'                   | !CWCW UBs - 2-Car HH                                |
| t5='u181'                   | !delta transit UB/trips/0-Car HH                    |
| t6='u281'                   | !delta transit UB/trips/1-Car HH                    |
| t7='u381'                   | !delta transit UB/trips/2-Car HH                    |
| t11='t13>30'                | !booleans, UB/trips >30 mins. O-car HH              |
| t12='t13<-30'               | !booleans, UB/trips <-30 mins. O-car HH             |
| t13='t10*t21'               | !UBs for trips saving >30 mins. O-car HH            |
| t14='t10*t22'               | !UBs for trips saving <-30 mins. O-car HH           |
| t15='t23+t24'               | !UBs for trips >30 & <-30 min savings               |
| t21='t14>30'                | !booleans, UB/trips >30 mins. 1-car HH              |
| t22='t14<-30'               | !booleans, UB/trips <-30 mins. 1-car HH             |
| t23='t11*t31'               | !UBs for trips saving >30 mins. 1-car HH            |
| t24='t11*t32'               | !UBs for trips saving <-30 mins. 1-car HH           |
| t25='t33+t34'               | !UBs for trips >30 & <-30 min savings               |
| t31='t15>30'                | !booleans, UB/trips >30 mins. 2-car HH              |
| t32='t15<-30'               | !booleans, UB/trips <-30 mins.2-car HH              |
| t33='t12*t41'               | !UBs for trips saving >30 mins.2-car HH             |
| t34='t12*t42'               | !UBs for trips saving <-30 mins.2-car HH            |
| t35='t43+t44'               | !UBs for trips >30 & <-30 min savings               |
| t51='t15+t25+t35'           | !UBs for trips >30 & <-30 min savings for all trips |
| t52='t51/t1'                | !ratio of UBs                                       |
| &END .                      |                                                     |
| &ANALYSIS                   |                                                     |
| trcsums=51                  |                                                     |
| &END                        |                                                     |
| March 2009                  | ETA Workshop on Travel Forecasting for New Starts   |

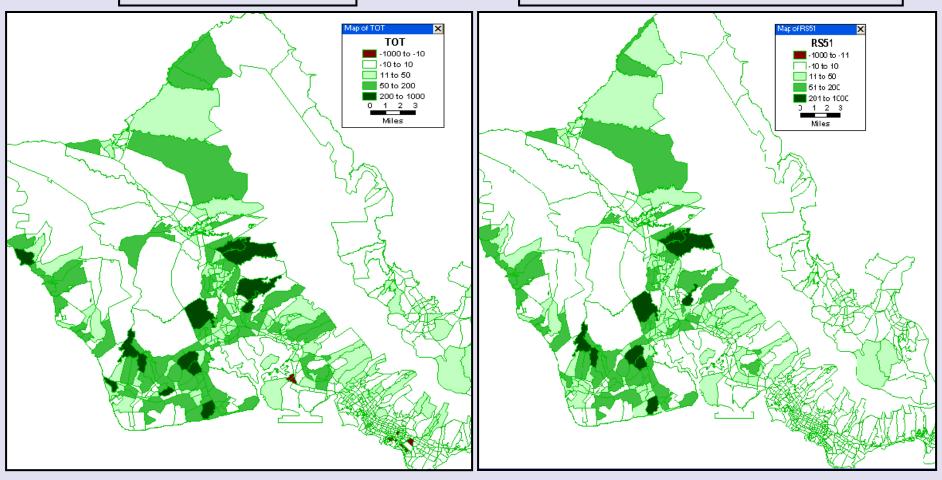


| Results |
|---------|
|---------|

|    | TO. | TAL | CW  | -CM | / Us | er B | lene | fits |     |     |     |     |      |     |     |     |     |    |
|----|-----|-----|-----|-----|------|------|------|------|-----|-----|-----|-----|------|-----|-----|-----|-----|----|
|    | 1   | 2   | 3   | 4   | 5    | 6    | 7    | 8    | 9   | 10  | 11  | 12  | 13   | 14  | 15  | 16  | 17  | 18 |
| 1  | 25  | 18  | 82  | 18  | 16   | 36   | 15   | 65   | 124 | 88  | 112 | 50  | 395  | 154 | 121 | 126 | 66  | 16 |
| 2  | 11  | 24  | 147 | 40  | 13   | 37   | 9    | 49   | 58  | 50  | 150 | 31  | 212  | 85  | 65  | 135 | 38  | 11 |
| 3  | 24  | 38  | 229 | 71  | 21   | 74   | 16   | 71   | 77  | 55  | 176 | 37  | 300  | 103 | 77  | 179 | 46  | 13 |
| 4  | -1  | 40  | 395 | 167 | 37   | 94   | 27   | 135  | 162 | 136 | 466 | 79  | 626  | 238 | 193 | 384 | 107 | 29 |
| 5  | 11  | 20  | 157 | 58  | 325  | 184  | 123  | 231  | 181 | 173 | 209 | 95  | 678  | 268 | 251 | 198 | 115 | 31 |
| 6  | -1  | 13  | 60  | 18  | 28   | 29   | 34   | 147  | 107 | 106 | 120 | 52  | 376  | 226 | 121 | 345 | 64  | 14 |
| 7  | 1   | 14  | 106 | 27  | 33   | 75   | 6    | 70   | 53  | 76  | 59  | 23  | 171  | 102 | 65  | 153 | 27  | 1  |
| 8  | -2  | 5   | 33  | 1   | 16   | 44   | 23   | -32  | -18 | 225 | 113 | 42  | 302  | 92  | 59  | 65  | 27  | 14 |
| 9  | 0   | 0   | 2   | 1   | 0    | 8    | 4    | 6    | -20 | 49  | -8  | 2   | 12   | 4   | 2   | 2   | 1   |    |
| 10 | 1   | 2   | 17  | 5   | 6    | 32   | 15   | 185  | 114 | 113 | 146 | 49  | 244  | 64  | 25  | 38  | 14  | 10 |
| 11 | 0   | 0   | 4   | 0   | 1    | 5    | 1    | 11   |     | 62  | 5   | 6   | 71   | 51  | 8   | 21  | 3   |    |
| 12 | 0   | 0   | 6   | 1   | 3    | 10   | 3    | 26   |     | 112 | 13  | 3   | 76   | 53  | 12  | 25  | 4   |    |
| 13 | 0   | 0   | 7   | 1   | 1    | 9    | 3    | 23   | -25 | 125 | 57  | 16  | 4    | 38  | 18  | 24  | 4   | -3 |
| 14 | 0   | 0   | 5   | 1   | -2   | 4    | 1    | 11   | -1  | 50  | 31  | -7  | 37   | 3   | 6   | -13 | -6  |    |
| 15 | 0   | 0   | 3   | 1   | -1   | 4    | 1    | 11   | -3  | 47  | 27  | -2  | 20   | 6   | 5   | 5   | 5   | (  |
| 16 | 0   | 0   | 2   | 0   | 0    | 0    | 1    | 5    | -10 | 23  | 1   | -13 | -142 | -33 | 1   | -7  | 16  | -2 |
| 17 | -1  | 1   | 6   | 3   | -1   | 5    | 0    | 14   | -11 | 41  | 1   | 1   | -12  | 32  | 19  | 49  | 18  |    |
| 18 | -1  | 1   | 13  | 4   | 2    | 18   | 4    | 41   | -5  | 98  | 27  | 6   | 17   | 61  | 61  | 63  | 6   | 0  |

|    |    |     |      |      |     |     |    |     |     |     |     |    |     |     | _   | _   |    | _  |
|----|----|-----|------|------|-----|-----|----|-----|-----|-----|-----|----|-----|-----|-----|-----|----|----|
|    | CW | -CW | / UB | s fo | r>3 |     |    |     |     |     |     |    |     |     |     |     |    |    |
|    | 1  | 2   | 3    | 4    | 5   | 6   | 7  | 8   | 9   | 10  | 11  | 12 | 13  | 14  | 15  | 16  | 17 | 18 |
| 1  | 0  | 12  | 59   | 8    | 9   | 8   | 12 | 52  | 108 | 84  | 92  | 45 | 328 | 148 | 117 | 126 | 61 | 11 |
| 2  | 7  | 10  | 79   | 29   | 8   | 15  | 6  | 46  | 57  | 50  | 148 | 31 | 208 | 83  | 64  | 135 | 38 | 11 |
| 3  | 0  | 7   | 25   | 32   | 13  | 34  | 11 | 61  | 72  | 54  | 166 | 37 | 294 | 102 | 76  | 179 | 46 | 12 |
| 4  | -1 | 14  | 106  | 92   | 27  | 36  | 21 | 107 | 150 | 135 | 444 | 71 | 529 | 223 | 187 | 332 | 96 | 23 |
| 5  | 7  | 16  | 115  | 42   | 158 | 131 | 80 | 160 | 155 | 167 | 163 | 79 | 519 | 235 | 236 | 194 | 95 | 21 |
| 6  | 0  | 6   | 24   | 27   | 13  | 31  | 14 | 49  | 77  | 103 | 109 | 44 | 266 | 213 | 114 | 283 | 53 | 9  |
| 7  | 0  | 9   | 49   | 20   | -1  | 11  | 0  | 13  | 25  | 70  | 41  | 14 | 109 | 71  | 55  | 89  | 18 | 9  |
| 8  | 0  | 2   | *    | 5    | 12  | 12  | 1  | -6  | 0   | 100 | 27  | 13 | 170 | 68  | 51  | 53  | 18 | 5  |
| 9  | 0  | 0   | 1    | 1    | -1  | 6   | 2  | -6  | 1   | 35  | -3  | 0  | 5   | 1   | 2   | 1   | 0  | 0  |
| 10 | 0  | 1   | 15   | 4    | 4   | 23  | 9  | 54  | 18  | 34  | 26  | 14 | 132 | 38  | 20  | 25  | *  | 4  |
| 11 | 0  | 0   | 1    | 0    | 0   | 2   | 1  | -1  | -4  | 29  | 0   | 1  | 1   | 0   | 2   | 0   | 1  | 0  |
| 12 | 0  | 0   | 3    | 0    | 1   | 4   | 2  | -3  | 0   | 38  | 0   | 0  | 1   | 0   | 1   | 0   | 0  | 0  |
| 13 | 0  | 0   | 1    | 1    | -1  | 2   | 3  | -2  | 1   | 66  | 1   | 0  | 0   | 0   | 0   | 0   | 1  | 0  |
| 14 | 0  | 0   | 1    | 1    | -1  | 2   | 1  | -2  | 0   | 25  | 0   | 0  | 0   | 0   | 1   | 0   | 0  | 0  |
| 15 | 0  | 0   | 1    | 0    | 0   | 2   | 0  | 0   | 0   | 22  | 1   | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| 16 | 0  | 0   | 1    | 0    | 0   | 0   | 1  | -1  | 0   | 9   | 0   | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| 17 | 0  | 0   | 2    | 2    | 0   | 3   | 0  | 0   | 0   | 24  | 0   | 0  | 0   | 0   | 0   | 0   | 0  | 0  |
| 18 | 0  | 1   | 4    | 2    | 2   | 12  | 3  | 13  | 1   | 46  | 3   | 1  | 10  | 18  | 17  | 10  | 3  | 0  |




#### **Observations**

- UBs from significant time changes
  - 69% of total UBs
  - Wow!
- Negative UBs
  - Apparently few from ±30 minutes
  - Need to do TLF to check



CW-CW UBs (Total)

CW-CW UBs (|ΔUBs/trip|>30 min)



#### **Problem #5**



#### Your colleague observes:

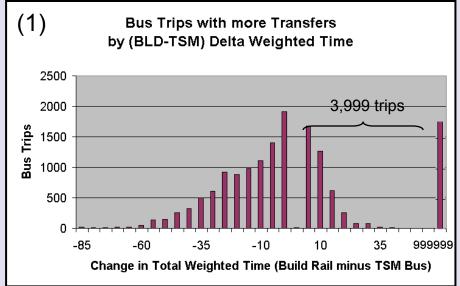
You sure were aggressive in eliminating competitive bus services in the rail alternative. Do you think that some of those cuts may cause an uproar and not ever happen?

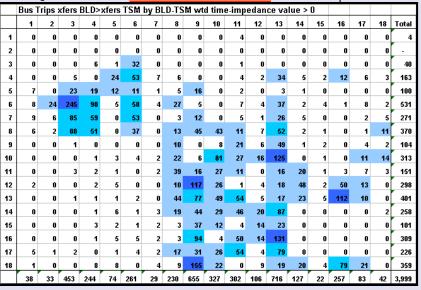
#### An approach

- Search for really unhappy "existing" transit riders
  - Rail alternative compared to TSM alternative
  - Transit trips that must transfer more and travel longer
- Identify geography and implicated TSM bus routes






- Implementation in Summit
  - Use Boolean to find TSM trips with more xfers in BLD
  - Compute Δ weighted time (BLD minus TSM)
  - Get TLFD of TSM trips by Δ weighted time
  - Stratify TSM trip tables by Δ weighted time
  - Assign badly affected TSM trips to the TSM network

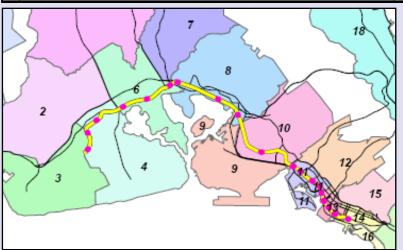



```
GENAMES
 ftable1 = '..\..\tsm-new\s3tpth\skamoowp.tsm' !transit impedances
                                                                     TSM
 ftable2 = '..\.\bld-new\s3tpth\skamoxfg.MSL' !transit impedances BLD
 ftable3 = "... \tsm-new\s4mc\ppxxwkmm.tsm"
                                                 !mode-choice output trip tables TSM
 ftlfd = 'prob#5.tlf'
                                                 !trip-length frequency distributions
 fstrats = 'prob#5.str'
                                                 !stratified trip tables
&END
&TABLES
 t1 = 't206>t106'
                                                 !boolean:- more xfers in BLD than in TSM
 t2 = 't304+t305'
                                                 !sum of walk-local and walk-express TSM bus trips
 t3 = 't1*t2'
                                                 !bus trips with xfersBLD > xfersTSM
 t4='0.01*t103+0.02*t101+6.0*t106+0.02*t102'
                                                                                         TSM
                                                !bus weighted travel time
 ta4 = 103
                                                 !bus availability based on total IVT
                                                                                         TSM
 t5='0.01*t203+0.02*t201+6.0*t206+0.02*t202'
                                                !rail weighted travel time
                                                                                         BLD
 ta5 = 204
                                                !rail availability based on rail IVT
                                                                                         BLD
 t6='t5-t4'
                                                 !diff in wtd travel time, BLD minus TSM
&END
EANALYSIS
  tlf1
           = 3.6
                                                 !TLFD: bus trips in TSM by BLD-TSM wtd time
                                                !5-minute intervals for the TLF
  intvltlf = 5.0
            3,6
  tstrat=
                                                 !bus trips stratified by BLD-TSM wtd time
 bpstrats = -0.01, 0.01
                                                 !breakpoints for stratifications
 tline2 = 'Report 2-#
  tline3 = 'Bus trips with xfersBLD > xfersTSM'
 tline4 = 'Stratified by BLD-minus-TSM Weighted Time'
&END
```



#### Results






#### (2) D-to-D cells of potential concern

- -- 6 to 3;
- -- 12,18 to 9
- -- 10,16 to 13;
- -- 13 to 16

#### (3) Bus lines of potential concern

- -- Route 19AW (476 trips)
- -- Route 50AE (383 trips)
- -- Route 3AE (247 trips)







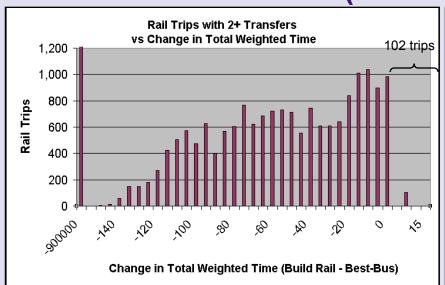
#### Your colleague worries:

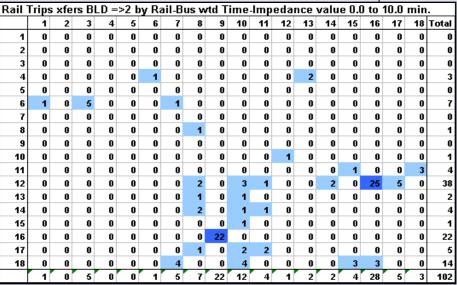
I did not realize how narrow your rail corridor is geographically. Many bus routes will still run in the corridor – parallel to the rail line. Do you think that a lot of your rail riders might actually stay on the buses?

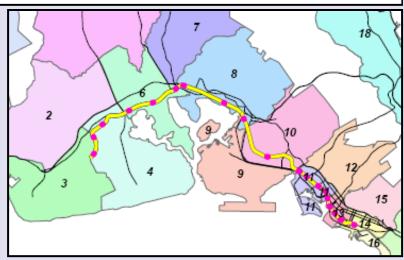
#### An approach

- Identify potentially grumpy rail riders (say, 2+ transfers)
- Check for good alternative bus path
- Identify riders with large +/- Δ weighted travel time







- Implementation in Summit
  - Use Boolean to find rail trips with 2+ xfers in BLD
  - Compute weighted times for all paths (LB, XB, rail)
  - Identify best\_bus weighted time
  - Compute weighted time difference (rail minus best\_bus)
  - Get TLFD of rail trips by weighted time difference
  - Stratify rail trip table by weighted time difference
  - Assign rail trips with competitive bus path to the bus-only network of the BLD alternative




```
&FNAMES
  ftable1='..\..\bld-new\s3tpth\skamoxwl.MSL'
                                                  !local bus impedances BLD
  ftable2='..\..\bld-new\s3tpth\skamxxwp.MSL'
                                                  !all Bus impedances BLD
  ftable3='..\..\bld-new\s3tpth\skamxxfg.MSL'
                                                  !quideway impedances BLD
  ftable4='..\.\bld-new\s4mc\ppxxwkmm.MSL'
                                                  !mode-choice output trip tables BLD
 ftlfd='Prob#6.tlf'
                                                  !trip-length frequency file
  fstrats='Prob#6.str'
                                                  !stratified trip tables
&END
&TABLES
  t1='t306>1'
                                                  !boolean: 2+ xfers in rail path
  t2='t406'
                                                  !walk to rail HBW trips, BLD
  t3='t1*t2'
                                                  !rail trips with 2+ transfers
  t11='0.01*t103+0.02*t101+6.0*t106+0.02*t102'
                                                  !LB only weighted travel time, BLD
  ta11=103
                                                  !LB availability indicated by LB IVT
  t12='0.01*t203+0.02*t201+6.0*t206+0.02*t202'
                                                  !all bus weighted travel time, BLD
  ta12=203
                                                  !all bus availability indicated by bus IVT
  t13='0.01*t303+0.02*t301+6.0*t306+0.02*t302'
                                                  !rail weighted travel time, BLD
  ta13=304
                                                  !rail availability indicated by rail IVT
  t14='t11 m t12'
                                                  !minimum of the LB and all-bus wtd times
  t15='t13-t14'
                                                  !delta wtd travel time (rail - best bus)
&END
&ANALYSIS
  tlf1
           = 3,15
                                                  !TLFD: rail trips arrayed by delta wted time
  intvltlf = 5.0
                                                  !5-minute intervals for the TLF
  tstrat=
             3,15
                                                  !rail trips stratified by delta wtd time
  bpstrats = -0.01, 0.01
                                                  !breakpoints for stratifications
  tline2 = 'Report 2-#'
  tline3 = 'Rail trips with xfersBLD => 2'
  tline4 = 'Stratified by (Rail-minus-Best Bus) Weighted Time'
&END
```









- (2) D-to-D cells of (minor) concern
  - -- 16 to 9
  - -- 12 to 16
- (3) Build bus lines of (minor) concern 19AW, 17BE, 8BE

Not much here; so risk of predicted rail riders actually staying on parallel buses seems very low.





- Roles of travel forecasts
  - Tradition: some grand totals but few insights
  - Better: answers to real-world questions
  - Best: information for decision-making
- Analytical reporting of forecasts
  - Quality control and quality assurance
  - Insights into problems, markets, impacts, benefits
  - Possible in <u>any</u> software setting
  - Possible only through analytical thinking