10. Uncertainty Analysis

FTA requirements for New Starts
Implementation

Specific SAFETEA-LU provisions

 Project ratings and reliability of forecasts
 Before-After studies of predicted/actual
 FFGA bonus awards for "good" forecasts
 Tracking of contractor performance

 Travel forecasting measure

 Guideway riders
 Measurable; most visible element

September 2007

Prior to PE application (in AA, post AA)

 Build-up of preferred-alternative forecast
 Scrutiny of large contributors
 Range of forecasts
 Formal documentation

 Updated at entry to Final Design

Build-up of LPA Forecast

Series of forecasts for:

Today

Plus future transit network

- Plus new transit behaviors
- Plus future trip tables

Plus future highway congestion

– Plus future parking costs

– Plus alternative land use (?)

Choice riders Park/ride Guideway effects

etc.

Scrutiny of "Drivers"

Perspectives

 Reliability of technical methods
 Consistency with current behavior, trends
 Consistency with peers

 Alternative outcomes

Range of Forecasts

Complete forecasts (not factored)
 Most likely
 Adjustments to key contributors?

- For project evaluation, so with user benefits
- Template for opening-year forecast
- -Lower bound: P(lower outcome) < 20%
- Upper bound: P(higher outcome) < 20%</p>

Documentation

Range of forecasts (low, likely, high)

 Ridership patterns
 Guideway ridership

 Discussion

 Key drivers of most-likely forecast
 Significant downside uncertainties
 Significant upside uncertainties

11. Before-After Studies

FTA requirements for New Starts
Implementation
Thoughts on good practice

■ New/Small Starts \rightarrow Before-After study Element of project scope - Pre-approved work-plan required – Eligible for FTA New Starts funds Dual purposes – Impacts of the project: "before vs. after" - Accuracy of forecasts: "predicted vs. actual" Annual report to Congress on findings

Before versus after

 Conditions prior to project implementation
 Conditions 2 years after project opening
 Understanding of project impacts

 Predicted versus actual

 Accuracy of forecasts
 Causes of differences
 Implications for methods, QC, management

Milestone	Activities
Post AA	Uncertainty analysis; forecast preservation
Post PE	Analysis of revisions; forecast preservation
Pre-project	Collection of "before" data
After opening (+2 yrs)	Collection of "after" data
	Analysis of project impacts
	Assessment of forecast accuracy

Uncertainties analysis
Analysis of interim changes
Preservation of forecasts
Collection of data ("before," "after")
Completion of the study

Analysis of interim changes

 Identification of causes
 Changes in project scope
 Changes in demographic forecasts
 Others

 Quantification of impact (no hand-waving)
 Separate contributions
 Full travel forecasts

Preservation of forecasts

 Documentation
 Networks, demographics, models
 Preservation of <u>ability to replicate forecasts</u>
 Computer(s) in the closet
 Migration to new software, hardware, models
 FTA oversight contractor -> archives

Collection of data ("before," "after")

 Conceptual design/budget in approved plan
 Detailed design

 Sampling plan, methods, data items
 Opportunity for FTA comment (approval?)
 Preservation of data
 FTA oversight contractor

Completion of the study Impact of the project Changes in services, ridership Meaningful differences in "before," "after" data Accuracy of forecasts Ridership forecast versus "after" data Analysis of differences – Full forecasts demonstrating impacts of changes No handwaving

Completion of the study (continued)

 Documentation
 FTA contractor
 FTA acceptance of completed study

 Experience to date

 Salt Lake City and Dallas
 "After" with no "before;" limited "predicted"

Demonstrate importance of preservation

September 2007

12. Performance Tracking

FTA requirements for New Starts
 Implications
 Implementation ideas

 Outlines of a proposal
 Formal draft, comments, and final policy guidance in 2008

Annual report to Congress
 Projects: FFGA New Starts; PCA Small Starts
 Summary of forecasts
 Identification of forecasting "contractors"
 New Starts projects opened to service
 Summary of first-year ridership
 Assessment of forecasts, causes of errors

Implications

Some areas of tension

- Risk | control
 - Contractors assume the risk of "bad" performance grades
 - Sponsors and others control key resources for forecasting
 - Budget, schedule, data, existing models ...
- Conditions | funding
 - Contractors' risk minimized by identifying uncertainties
 - Sponsors' funding put at risk by identified uncertainties
- AA contractor | PE contractor
 - May not be the same (good or bad for analytical rigor??)

Implications

Some more areas of tension

- Evaluation measure | measurable impacts
 - Projects are evaluated on mobility benefits
 - Project ridership is more measurable and visible

Forecast year | performance year

- Projects are evaluated with 2030 benefits
- Contractor performance is based on opening year

Implementation Ideas

Scope: assessment of all contributions

 Contractor
 Project sponsor, MPO, others

 Uncertainties analysis

 Required prior to PE application
 Forecasts and methods preserved for use in later analyses

Principal measures

 Guideway ridership
 System ridership

 Consistency

 2030 & 1st year: same methods
 Allowance for initial maturation effects

 FTA oversight contractor

Performance Scoring

Parallels project ratings

 Five rating categories (High ... Low)
 Multiple measures
 Weighted average with judgment

 Criteria

 Proximity of actual ridership to forecast
 Sources of error controlled by contractor
 Sources of error controlled by others

Criteria

Proximity: actual vs. most likely forecast

 Within ±20 percent
 Below floor
 Above ceiling

 Sources of error (contractor)

 Source identified/explored
 In uncertainties analysis

Criteria

Sources of error (others)

 Source identified/explored
 Implications quantified
 Adjustments high/low forecasts

In uncertainties analysis

Ideas and Comments

Now
E-mail, soon
Formally in early 2008

13. Transit Path Choices

No FTA requirements on this topic
Some observations
Three presentations
Discussion

Some Observations

Transit choices

 Access mode (walk, bus, PnR, KnR, etc.)
 Line-haul mode (bus, rail, etc.)
 Path (first boarding, last alighting)

 Central issue for model design

 Choices handled by the pathbuilder?
 Choices handled in "mode" choice?

An Example

Setting: Honolulu

 Dense existing bus network
 Corridor defined by geographic constraints
 Rail options imply lots of bus changes

 Pathbuilder

 All-or-nothing (with combined headways)

 Question: pathbuilder-alone adequate?

Some Analysis

- Transit trips
 - Build alternative
 - HBW/peak = 81,200 trips
- Transit paths
 - Best bus-only
 - Rail, bus IVT weight = 1.2
- Observations
 - 34,500 trips have choice
 - 9,200 trips, $|\Delta| < 5$ min.
 - 16,100 trips, $|\Delta| < 15$ min.
 - Best path \rightarrow more rail trips
 - Path choice \rightarrow more UBs

September 2007

A Modified Approach

Pathbuilder: four best paths

- Best bus/walk
- Best bus/drive
- Best rail/walk
- Best rail/drive
- Mode choice model
 - "Transit" mode = four discrete choices
 Probably with some nested structure

Actually, Many Design Options

Other transit choices

- Ferry
- Local bus, limited-stop bus, express bus
- Walk-rail versus walk-bus-rail
- Other influences
 - Transit pathbuilding algorithm
 - Zone size
 - Computational intensity

September 2007

Presentations

Path Choice with Substantial Reliance On Discrete-Choice Models

Bill Davidson, Parsons Brinckerhoff

Path Choice with Principal Reliance
 On Networks and Path-builders
 Bill Woodford, AECOM Consult

 "To Multipath or Not to Multipath" – The Denver Experience

David Kurth, Cambridge Systematics, Inc.

September 2007
Path Choice with Substantial Reliance On Discrete-Choice Models

Bill Davidson Parsons Brinckerhoff

September 2007

Why Rely Heavily on Discrete Choice Models?

Many shades of gray?
What might be a decision framework?
Considering the full range of choices
Behavioral implications

Los Angeles Nested Model

Miami Mode Choice Model

September 2007

Thoughts about a Decision Framework

What are the choices to be considered?

- Existing
- And future
- Understanding markets
 - Context specific ("one size does not fit all")
 - Survey data requirements and <u>quality</u>

Some Possible Criteria

Non-included Attributes
 Facility related
 Span of service
 Passenger amenities
 Trip characteristics
 Vehicle, reliability, seat availability.....
 Competition

(More) Possible Criteria

Market segmentation

 Traveler, access/egress....

 Elasticities

 Tradeoffs

 Mobility influences

 More choices available to the traveler

Choice Dimensions

Physical & operational characteristics Access/egress Market segmentation San Diego and small area geography Differences in walk access options (bus v. rail) Boarding location choice Station

Bus stop

September 2007

From the MSP Workshop

Access Representation

Paths from I to J

- Detailed
 - walk-rail-walk
 - walk-bus-rail-walk
 - walk-rail-bus-walk
 - walk-bus-walk
 - drive-rail-walk
 - drive-rail-bus-walk
- Typical
 - walk-local-walk
 - walk-premium-walk
 - drive-transit-walk

Markets	from i	I to J
---------	--------	--------

Detailed

25 x 12.5	= 3.125
100 x 12.5	= 12.5%
25 x 100	= 25%
100 x 100	= 100%

- 100 x 12.5
- 100 x 100
- Typical
 - 100 x 100
 - 100 x 100
 - 100 x 100
- = 100%

= 12.5%

= 100%

- = 100%
- = 100%

6

More Choice Dimensions

Competition - Access (WMATA) Walk to bus to rail Direct walk to rail Primary mode (Los Angeles) Metrolink v. Urban Rail v. Transitway long distance travel Urban Rail v. Rapid Bus v. Local Bus Intra corridor travel

Even More Choice Dimensions

Modal Interactions

 Metrolink & Red Line
 Orange Line (BRT) & Red Line
 60% of Orange Line riders transfer to Red Line
 Implicit Hierarchy in Nested Models
 Where is that Red Line rider?

– Metrolink, Urban Rail, BRT, Rapid Bus ???

Behavioral Implications

Consideration of non-included attributes – Fixed v. variable Value of time differences – Fare contribution to path choice – Express bus, urban rail, commuter rail Elasticities – 500 new spaces at Lot A

Why Rely Heavily on Discrete Choice Models?

Choice complexities

- Access/egress (market segmentation)
- Competition
- Interactions
- Behavioral considerations
 - Non-included attributes
 - Value of time
 - Elasticities/mobility influences

Path Choice with Principal Reliance On Networks and Path-builders

Bill Woodford, AECOM Consult

September 2007

Range of Options; Not an Either/Or Choice

- Discrete choice models depend on network path builders for each choice (or component of a choice)
- Most models that rely on transit path builders still have separate choices for access mode (walk vs. drive access)
- Key question:

What is a path-building decision and what is a mode-choice decision?

The Range of Options

54

Philosophy Behind Reliance on Network/Path-builders

- All other things being equal, a simple model is preferable to a complex model since it is:
 - Faster to develop
 - Easier to understand and explain
 - Less likely to have unknown/undesirable interrelationships
- Complexity is needed when a simpler model doesn't:
 - Depict how travelers behave (mode and submode level)
 - Provide important information on the operation of a project
 - Tell the story of a project
- Bottom Line:
 - Start simple, add complexity as needed
 - Begin by building the best paths possible...good paths are essential for choice based models also.

Other Questions Influencing Model Design

- Does the software permit realistic mode-specific paths?
- Can I afford the time/storage associated with a separate set of skims for each choice?
- Can I define a transit sub-mode hierarchy the properly represents the relationships among the options?
- Will this mode hierarchy continue into future with the introduction of new projects?
- Does added complexity help or hinder telling the story of the project?

Example

 What happens with rail replaces bus in a simple network?
 Calibration case (and baseline):

 Bus only system
 5% transit share

 Modeling questions

 UTPS or multipath?
 Path-based or choice-based?

Example – Baseline

Example – Build

Pathbuilder-Based – As Defined (No Time Savings)

		Pathbuilder (UTI	PS Paths)		Pathbuilder (mu	lti paths)	
		Nest Coef	1		Nest Coef	1	
Baseline		HWY	Transit	Vacant	HWY	Transit	Vacant
Impedanc	ce Terms						
IVTT	-0.025	15	35		15	35	
WAIT	-0.0625		25			17.5	
WALK	-0.0625		10			10	
XFER	-0.125		1			1	
Constant		0	-0.14	-0.14	0	-0.6	-0.6
Mode Cho	oice Computations						
UTIL/nest	coef	-3.75000E-01	-3.32750E+00	0.00000E+00	-3.75000E-01	-3.31875E+00	0.00000E+00
e(UTIL/ne	est coef)		3.58827E-02	0.00000E+00		3.61981E-02	0.00000E+00
	Sub Mode Share		100.0%	0.0%		100.0%	0.0%
	logsum		-3.32750E+00			-3.31875E+00	
	Eutil	6.87289E-01	3.58827E-02		6.87289E-01	3.61981E-02	
	Main Mode Share	95.0%	5.0%		95.0%	5.0%	
Share		95.0%	5.0%	0.0%	95.0%	5.0%	0.0%
Trips (per	100)	95.0	5.0	-	95.0	5.0	-
Build		HWY	Transit	Vacant	HWY	Transit	Vacant
Impedanc	ce Terms						
IVTT	-0.025	15	35		15	35	
WAIT	-0.0625		25			17.5	
WALK	-0.0625		10			10	
XFER	-0.125		1			1	
Constant		0	-0.14	-0.14	0	-0.6	-0.6
Mode Cho	oice Computations						
UTIL/nest	coef	-3.75000E-01	-3.32750E+00	0.00000E+00	-3.75000E-01	-3.31875E+00	0.00000E+00
e(UTIL/ne	est coef)		3.58827E-02	0.00000E+00		3.61981E-02	0.00000E+00
	Sub Mode Share		100.0%	0.0%		100.0%	0.0%
	logsum		-3.32750E+00			-3.31875E+00	
	Eutil	6.87289E-01	3.58827E-02		6.87289E-01	3.61981E-02	
	Main Mode Share	95.0%	5.0%		95.0%	5.0%	
Share		95.0%	5.0%	0.0%	95.0%	5.0%	0.0%
Trips (per	100)	95.0	5.0	-	95.0	5.0	-
Evaluatio	n Measures						
			0 or 5			25	
LRI Trips			0015			2.0	
LRT Trips Incremetal	l Transit Trips		-			-	

Pathbuilder-Based – Adjusted (1 minute LRT Time Savings)

	Pathbuilder (UTI	PS Paths)- 1 mir	LRT saved	Pathbuilder (mu	lti paths)- 1 minu	ute LRT saved
	Nest Coef	1		Nest Coef	1	
Baseline	HWY	Transit	Vacant	HWY	Transit	Vacant
Impedance Terms						
IVTT -0.025	15	35		15	35	
WAIT -0.0625		25			17.5	
WALK -0.0625		10			10	
XFER -0.125		1			1	
Constant	0	-0.14	-0.14	0	-0.6	-0.6
Mode Choice Computations						
UTIL/nest coef	-3.75000E-01	-3.32750E+00	0.00000E+00	-3.75000E-01	-3.31875E+00	0.00000E+00
e(UTIL/nest coef)		3.58827E-02	0.00000E+00		3.61981E-02	0.00000E+00
Sub Mode Share		100.0%	0.0%		100.0%	0.0%
logsum		-3.32750E+00			-3.31875E+00	
Eutil	6.87289E-01	3.58827E-02		6.87289E-01	3.61981E-02	
Main Mode Share	95.0%	5.0%		95.0%	5.0%	
Share	95.0%	5.0%	0.0%	95.0%	5.0%	0.0%
Trips (per 100)	95.0	5.0	-	95.0	5.0	-
Build	HWY	Transit	Vacant	HWY	Transit	Vacant
Impedance Terms						
IVTT -0.025	15	34		15	34.5	
WAIT -0.0625		25			17.5	
WALK -0.0625		10			10	
XFER -0.125		1			1	
Constant	0	-0.14	-0.14	0	-0.6	-0.6
Mode Choice Computations						
UTIL/nest coef	-3.75000E-01	-3.30250E+00	0.00000E+00	-3.75000E-01	-3.30625E+00	0.00000E+00
e(UTIL/nest coef)		3.67911E-02	0.00000E+00		3.66534E-02	0.00000E+00
Sub Mode Share		100.0%	0.0%		100.0%	0.0%
logsum		-3.30250E+00			-3.30625E+00	
Eutil	6.87289E-01	3.67911E-02		6.87289E-01	3.66534E-02	
Main Mode Share	94.9%	5.1%		94.9%	5.1%	
Share	94.9%	5.1%	0.0%	94.9%	5.1%	0.0%
Trips (per 100)	94.9	5.1	-	94.9	5.1	-
Evaluation Measures						
LRT Trips		5.1			2.6	
Incremetal Transit Trips		0.1192			0.0597	
UB Min		5.0212			2.5165	

Choice-Based – As Defined (No Time Savings)

		Choice/UTPS Pa	aths		Choice/Multipat	hs	
		Nest Coef	0.3		Nest Coef	0.3	
Baseline		HWY	Bus	LRT	HWY	Bus	LRT
Impedanc	e Terms						
IVTT	-0.025	15	35		15	35	
WAIT	-0.0625		25			17.5	
WALK	-0.0625		10			10	
XFER	-0.125		1			1	
Constant		0	-0.14	-0.14	0	-0.6	-0.6
Mode Cho	pice Computations						
UTIL/nest	coef	-3.75000E-01	-1.10917E+01	0.00000E+00	-3.75000E-01	-1.10625E+01	0.00000E+00
e(UTIL/nes	st coef)		1.52388E-05	0.00000E+00		1.56898E-05	0.00000E+00
	Sub Mode Share		100.0%	0.0%		100.0%	0.0%
	logsum		-1.10917E+01			-1.10625E+01	
	Eutil	6.87289E-01	3.58827E-02		6.87289E-01	3.61981E-02	
	Main Mode Share	95.0%	5.0%		95.0%	5.0%	
Share		95.0%	5.0%	0.0%	95.0%	5.0%	0.0%
Trips (per	100)	95.0	5.0	-	95.0	5.0	-
Build		HWY	Bus	LRT	HWY	Bus	LRT
Impedanc	e Terms						
IVTT	-0.025	15	35	35	15	35	35
WAIT	-0.0625		25	25		25	25
WALK	-0.0625		10	10		10	10
XFER	-0.125		1	1		1	1
Constant		0	-0.14	-0.14	0	-0.6	-0.6
Mode Cho	pice Computations						
UTIL/nest	coef	-3.75000E-01	-1.10917E+01	-1.10917E+01	-3.75000E-01	-1.26250E+01	-1.26250E+01
e(UTIL/nes	st coef)		1.52388E-05	1.52388E-05		3.28876E-06	3.28876E-06
	Sub Mode Share		50.0%	50.0%		50.0%	50.0%
	logsum		-1.03985E+01			-1.19319E+01	
	Eutil	6.87289E-01	4.41768E-02		6.87289E-01	2.78881E-02	
	Main Made Chara	04.00/	0.00/		96.1%	3.9%	
	Main Mode Share	94.0%	6.0%		00.170	0.070	
Share		94.0% 94.0%	6.0% 3.0%	3.0%	96.1%	1.9%	1.9%
Share Trips (per	100)	94.0% 94.0% 94.0	6.0% 3.0% 3.0	3.0% 3.0	96.1% 96.1	1.9% 1.9	1.9% 1.9
Share Trips (per Evaluatio r	100) n Measures	94.0% 94.0% 94.0	6.0% 3.0% 3.0	3.0% 3.0	96.1% 96.1	1.9% 1.9	1.9% 1.9
Share Trips (per Evaluatior LRT Trips	100) n Measures	94.0% 94.0% 94.0	6.0% 3.0% 3.0 3.0	3.0% 3.0	96.1% 96.1	1.9% 1.9 1.9	1.9% 1.9
Share Trips (per Evaluatior LRT Trips Incremetal	100) n Measures	94.0% 94.0% 94.0	6.0% 3.0% 3.0 3.0 1.0776	3.0% 3.0	96.1% 96.1	1.9% 1.9 1.9 (1.1038)	1.9% 1.9

Choice-Based – Adjusted (1 minute LRT Time Savings)

		Choice/UTPS Pa	aths- 1 min LRT	saved	Choice/Multipath	ns - 1 min LRT s	aved
		Nest Coef	0.3		Nest Coef	0.3	
Baseline		HWY	Bus	LRT	HWY	Bus	LRT
Impedanc	e Terms						
IVTT	-0.025	15	35		15	35	
WAIT	-0.0625		25			17.5	
WALK	-0.0625		10			10	
XFER	-0.125		1			1	
Constant		0	-0.14	-0.14	0	-0.6	-0.6
Mode Cho	oice Computations						
UTIL/nest	coef	-3.75000E-01	-1.10917E+01	0.00000E+00	-3.75000E-01	-1.10625E+01	0.00000E+00
e(UTIL/nes	st coef)		1.52388E-05	0.00000E+00		1.56898E-05	0.00000E+00
	Sub Mode Share		100.0%	0.0%		100.0%	0.0%
	logsum		-1.10917E+01			-1.10625E+01	
	Eutil	6.87289E-01	3.58827E-02		6.87289E-01	3.61981E-02	
	Main Mode Share	95.0%	5.0%		95.0%	5.0%	
Share		95.0%	5.0%	0.0%	95.0%	5.0%	0.0%
Trips (per	100)	95.0	5.0	-	95.0	5.0	-
Build		HWY	Bus	LRT	HWY	Bus	LRT
Impedanc	e Terms						
IVTT	-0.025	15	35	34	15	35	34
WAIT	-0.0625		25	25		25	25
WALK	-0.0625		10	10		10	10
XFER	-0.125		1	1		1	1
Constant		0	-0.14	-0.14	0	-0.6	-0.6
Mode Cho	oice Computations						
UTIL/nest	coef	-3.75000E-01	-1.10917E+01	-1.10083E+01	-3.75000E-01	-1.26250E+01	-1.25417E+01
e(UTIL/nes	st coef)		1.52388E-05	1.65631E-05		3.28876E-06	3.57457E-06
	Sub Mode Share		47.9%	52.1%		47.9%	52.1%
	logsum		-1.03560E+01			-1.18893E+01	
	Eutil	6.87289E-01	4.47441E-02		6.87289E-01	2.82462E-02	
	Main Mode Share	93.9%	6.1%		96.1%	3.9%	
Share		93.9%	2.9%	3.2%	96.1%	1.9%	2.1%
Trips (per	100)	93.9	2.9	3.2	96.1	1.9	2.1
Evaluation	n Measures						
LRT Trips			3.0			1.9	
Incremetal	Transit Trips		1.1505			(1.0557)	
			10 7160			(11 2072)	

Deep Nested Choice-Based – Adjusted (1 minute LRT Time Savings)

	Choice/UTPS Pa	aths- 1 min LRT	saved	Choice/Multipatl	hs - 1 min LRT s	aved
	Nest Coef	0.01		Nest Coef	0.01	
Baseline	HWY	Bus	LRT	HWY	Bus	LRT
Impedance Terms						
IVTT -0.025	15	35		15	35	
WAIT -0.0625		25			17.5	
WALK -0.0625		10			10	
XFER -0.125		1			1	
Constant	0	-0.14	-0.14	0	-0.6	-0.6
Mode Choice Computations						
UTIL/nest coef	-3.75000E-01	-3.32750E+02	0.00000E+00	-3.75000E-01	-3.31875E+02	0.00000E+00
e(UTIL/nest coef)		3.07972E-145	0.00000E+00		7.38786E-145	0.00000E+00
Sub Mode Share		100.0%	0.0%		100.0%	0.0%
logsum		-3.32750E+02			-3.31875E+02	
Eutil	6.87289E-01	3.58827E-02		6.87289E-01	3.61981E-02	
Main Mode Share	95.0%	5.0%		95.0%	5.0%	
Share	95.0%	5.0%	0.0%	95.0%	5.0%	0.0%
Trips (per 100)	95.0	5.0	-	95.0	5.0	-
Build	HWY	Bus	LRT	HWY	Bus	LRT
Impedance Terms						
IVTT -0.025	15	35	34	15	35	34
WAIT -0.0625		25	25		25	25
WALK -0.0625		10	10		10	10
XFER -0.125		1	1		1	1
Constant	0	-0.14	-0.14	0	-0.6	-0.6
Mode Choice Computations						
UTIL/nest coef	-3.75000E-01	-3.32750E+02	-3.30250E+02	-3.75000E-01	-3.78750E+02	-3.76250E+02
e(UTIL/nest coef)		3.07972E-145	3.75187E-144		3.24313E-165	3.95095E-164
Sub Mode Share		7.6%	92.4%		7.6%	92.4%
logsum		-3.30171E+02			-3.76171E+02	
Eutil	6.87289E-01	3.68201E-02		6.87289E-01	2.32439E-02	
Main Mode Share	94.9%	5.1%		96.7%	3.3%	
Share	94.9%	0.4%	4.7%	96.7%	0.2%	3.0%
Trips (per 100)	94.9	0.4	4.7	96.7	0.2	3.0
Evaluation Measures						
LRT Trips		4.7			3.0	
Incremetal Transit Trips		0.1230			(1.7319)	
UB Min		5.1816			(72.2694)	

Example: Summary

	UTPS Paths	Multipaths	Choice UTPS	Choice Multipath	Deep Nested	Deep Nested Multipath
No Time Savings			0110	manipati	0110	Malapath
Base Transit Trips	5.0	5.0	5.0	5.0	5.0	5.0
LRT Trips	2.5	2.5	3.0	1.9	4.7	3.0
Delta Transit Trips	-	-	1.1	(1.1)	0.0	(1.8)
UB Minutes	-	-	45.6	(46.2)	1.4	(74.7)
UB Min./Base Transt Trip	-	-	9.1932	(9.2359)	0.2782	(14.9331)
1 min LRT TimeSavings				· · · · · · · · · · · · · · · · · · ·		
Base Transit Trips	5.0	5.0	5.0	5.0	5.0	5.0
LRT Trips	5.1	2.6	3.0	1.9	4.7	3.0
Delta Transit Trips	0.1	0.1	1.2	(1.1)	0.1	(1.7)
UB Minutes	5.0	2.5	48.7	(44.2)	5.2	(72.3)
UB Min./Base Transit Trip	1.0	0.5	9.8182	(8.8357)	1.0443	(14.4444)
Note for LITDC no time covings	u al impadance d	a a um a d ta ba a	(and) (diatributed	l ana an a matha		

Note for UTPS, no time savings, equal impedance assumed to be evenly distributed among paths

Questions

- Should multi-path credit be assigned to multiple bus paths also?
- What does define an independent choice as distinct from a typical bus path choice?
- Does it matter since a deeply nested outcome begins to mirror path-based models?
- Can multi-path path-builders co-exist with nested choice models?

Conclusion: Depends on Having a Meaningful *Choice*

- Significantly different level of service / comfort
 - Guaranteed seat
 - Fare different
 - Substantial time improvement
 - Independent marketing identity

 Evidence that presence of multiple choices increases mode share independent of time and cost Transit Path-Building: "To Multipath or Not to Multipath" – The Denver Experience

David Kurth, Cambridge Systematics, Inc.
Based on work performed with:
Suzanne Childress (Parsons)

Erik Sabina & Sreekanth Ande (DRCOG)

Lee Cryer (Denver RTD)

September 2007

Investigation Context

 DRCOG Integrated Regional Model (IRM) development

- Activity / tour-based model
- Better representation of transit possible
- Correct options in estimation dataset required for proper estimation

Detailed Travel Behavior Inventory (TBI) data

Provided for detailed path-checking

Simple Path-Builder + Simple Mode Choice

Complex Path-Builder + Simple Mode Choice

Simple Path-Builder + Complex Mode Choice

Complex Path-Builder + Complex Mode Choice

IRM Design Options

Example RTD Path Options

3 Reasonable Paths – Path 1: 2 Local Buses Path 2: 2 Local Buses Path 3: Local Bus, Rail, Mall Shuttle Travel Behavior Inventory (TBI) had observations for all three!

September 2007

Access Distance Impact on Route Choice

Example RTD Path Options

3 Reasonable Paths – Path 1: 2 Local Buses Path 2: 2 Local Buses Path 3: Local Bus, Rail, Mall Shuttle, Local Bus Travel Behavior Inventory (TBI) observations for all three!

I-25 / Broadway Station

September 2007

I-25/Broadway Transfers

September 2007

Transit Network Testing: Typical

- Route specific travel times
 Modeled versus observed
- Selected transit paths
 - Logical? ("Yep, that makes sense...")
- Boardings per linked trip
 - Assignment of observed on-board survey trips
 - Comparison of assigned to observed boardings
 - By route
 - By service type
 - By access mode (walk versus drive)

Transit Network Testing: Opportunities

TBI Data –

 Access and egress mode
 Individual routes used

 RTD system

 Reasonable options for paths
 Reasonable options for modes

TBI Path-Matching Experiments

- Reviewed selected individual reported paths
 - Some logical paths not selected
 - Some multiple path options
 - Some poor reporting by respondents

TBI Path-Matching Experiments

- Review of selected individual reported paths
 - Some logical paths not selected
 - Some multiple path options
 - Some poor reporting by respondents
- I.IS VERY LABOR INTENSIVE!
- Automated procedure
 Prediction success tables

Transit Networks for Path-Building

7 Networks: Local Bus Only Local & Premium Bus Premium Bus Only Local Bus & Rail Premium Bus & Rail Rail Only All Modes 4 Times-of-Day: AM Peak PM Peak **Off-Peak** Early/Late 2 Access Modes: Walk Access **Drive Access** 56 Sets of Paths

September 2007

How Good Is the Complex MC-Simple Path Approach?

Prediction success tests
 Built paths for observed interchanges
 Based on observed mode combination

 Local only, premium only, rail only...

 Compared:

 Modeled to observed boardings

 Interchange-by-interchange basis

Prediction Success Results PM Work Trip – Walk to Rail Only

		Skimmed Boardings			
		No Path	1	2	3+
TBI Reported Boardings	No Path	0	0	0	0
	1	7	3	4	0
	2	1	0	0	0
	3+	0	0	0	0

September 2007

Prediction Success–Complex MC-Simple Path Approach

Aggregation	Number	Percent with Skimmed Boardings:			
Level	of Linked Trips	= Reported Boardings	> Reported Boardings	< Reported Boardings	
All Trips	1,278	67%	24%	9%	
Walk Access	854	67%	23%	9%	
Drive Access	424	67%	25%	7%	

67 percent "correct"
Unaffected by access mode

Prediction Success Results

Complex MC-Simple Path vs. Simple MC-Complex Path

AM Walk Access Trips

Path-	Number of Paths Found	Boardings / Linked Trip	Percent with Skimmed Boardings:		
Building Approach			= Reported Boardings	> Reported Boardings	< Reported Boardings
Observed	308	1.5	—	—	—
Simple	290	1.6	66%	22%	12%
Complex	302	1.9	52%	38%	10%

Simple Approach
 As before

Complex Approach

Observed trips assigned to "All modes" paths

Some Observations...

Transit users

- Pick individual paths
- Do not necessarily:
 - pick the same paths
 - pick logical paths
 - accurately report paths
- Transit multi-path builders
 - Representation of discrete choice
 - Do not capture choice behavior

Conclusions – For Denver

Transit paths

- Are choice behavior
- Should be represented as discrete choices
- Require substantial resources to model and estimate

Conclusions – In General

- Common network validation measures that may *not* be sufficient
 - Ability to assign all observed trips
 - Matching observed boardings / linked trip
- More detailed validation is feasible (prediction success tables)
 - Well designed on-board survey is needed
 - Good origin and destination reporting
 - Access and egress mode
 - Boardings by mode for reported trip

September 2007

Some FTA Observations

Path-Types / Discrete Choice

Network/Pathbuilder

- People choose different paths I-J
- Pathbuilders do fares badly
- Need 1st-board-location choice
- Different choices, different ϵ 's
- Others

- Nesting β 's always asserted
- Pathbuilder–MC consistency
- Favoring paths \rightarrow distortions
- Path choices defy discrete labels
- Others

14. Telling a Good Story

FTA requirements for New Starts
Useful "Make the Case" documents
Thoughts on good practice
Participant experiences
An example

FTA Requirements

Make-the-Case document

- <u>Guide</u> to project benefits and "justification"
 - For FTA staff
 - For FTA briefing papers, talking points
 - For the Annual Report on New Starts
- Element of project "justification" rating

A Useful Document

- No more than "five pages"
 - Project identification
 - Setting
 - Purpose
 - Current conditions in the corridor
 - Anticipated conditions in 2030
 - The case for the proposed project
 - Risk
 - Summary

Some Not-Useful Elements

Topics relevant elsewhere (not here)

- History of project development
- Detailed project description
- Financial feasibility
- Public support; other support
- "Importance"
- Pictures

Project Identification

One or two sentences

 Transit mode
 Starter line, expansion, or extension
 Length of project
 Location

Setting

Map

Key jurisdictions, activity centers
 Any key geographical features
 Major transportation facilities

Purpose of the Project

Transportation

 Whom is it intended to serve?
 From where to where?

 Economic development (if applicable)

 Development locations
 Role of the project – specific mechanisms

Current Conditions

<u>Current</u> ≈ today (usually, today ≠ 2000)
 <u>Conditions</u> relevant to project benefits

 Key travel markets (and recent growth?)
 Congestion & highway travel times
 Transit services & transit travel times
 Transit ridership, emphasis on key markets

Conditions in 2030

Key <u>changes</u>: today to 2030 (No Build)

 Travel markets
 Highway system
 Transit facilities, services, and travel times
 Transit ridership

 Well linked to current conditions

Case for the Project

Low-cost approach (TSM)

 Brief description of key TSM elements
 Impact on transit service quality
 Impact on transit ridership
 Mobility benefits (time savings)
 Cost-effectiveness versus No-Build
 Success in addressing the purpose(s)

Case for the Project

Proposed approach

 Brief description of the project
 Impact on transit service quality
 Impact on transit ridership in key markets
 Mobility benefits (time savings)
 Success in achieving the purpose(s)
 Cost-effectiveness versus TSM

Risk

Uncertainties in the costs Project scope – Unit prices - Track record Uncertainties in the benefits Time savings - Guideway ridership – Track record

September 2007

Summary

One paragraph; one sentence per topic Essential elements of the case – What is the purpose? – How urgent is the problem? – Why is a low-cost approach insufficient? - How well does the project succeed? – Are costs in scale with the benefits? – How firm are the costs and benefits?

Thoughts on Good Practice

Focus

- All discussion sections should help explain the benefits of the project
- A strategy
 - 1. Figure out the principal benefits (markets: geography, trip purposes, etc.) that make the case
 - Focus the introductory sections (setting, current and future conditions) on those markets

Thoughts on Good Practice

Quantification

- Forecasts have numbers for \approx everything
- Use them to avoid hand-waving.

Clarity

- "To write well is to think clearly. That's why it's so hard." – David McCollough, 2003
- Assign someone who can do both.

Thoughts on Good Practice

Resources

- Basic summaries often not enough
- Subtask: extract information from forecasts
- Preservation of resources for this work
- FTA assistance

Ethics

- Reliable numbers for decision-making
- Bringing project benefits to the discussion

Participant Experiences

Attempts at Make-the-Case narratives
 Methods to find/correct errors

 Summit
 Other tools/procedures

 Methods to better understand a project

 Summit
 Other tools/procedures
Making the Case: An Example

Perris Valley Commuter Rail Extension – Riverside County Transportation Commission (California)

Perris Valley Line

Identification

23-mile extension of the Metrolink commuter rail system from Riverside to communities in Perris Valley southeast of Riverside

Travel Forecasting for New Starts

Setting

City of Riverside

 50 miles east of downtown LA
 30 miles northeast of central Orange County

 Perris Valley and I-215 to southeast
 Moreno Valley and SR-60 to the east
 Metrolink lines

 Riverside Line to LA via Pomona
 91 Line to LA via Fullerton
 Inland Empire line to Orange County

Purpose of the Project

The Perris Valley extension will improve transit access to the Metrolink system and the locations it serves for residents of Perris and Moreno Valleys.

Current Conditions

Demographics

- 425,000 people and 123,000 jobs
- One of the most rapidly growing counties nationally
- Housing prices 25-35% less than in LA and OC
- Long commutes and drive times
 - Riverside to LA CBD: 54 miles, 100 minutes
 - Riverside to Orange: 35 miles in 76 minutes)

Current Conditions

- Key travel markets from Perris Valley
 - 18,000 workers to LA County
 - 30,000 workers to Orange County
- Metrolink service from Riverside
 - 37 trains per day on two lines to LA and one line to OC
 - Focused on peak periods and commuters
- Metrolink ridership: Riverside and adjacent stations
 - 4,000 weekday trips total; 3,000 at Riverside station
 - 84% commuters; 65 % Perris Valley residents
 - 90 percent use auto access; 10 percent connector bus
 - Drive from South Perris to Riverside: 21 miles, 32 mins.

Conditions in 2030

Rapid growth in Perris Valley

 +76% population to 600,000 people
 +115% employment to 210,000 jobs

 Resulting growth in commuter markets

 24,000 workers to LA County (+33%)
 46,000 workers to Orange Co. (+53%)

 Consequent lengthening of peak periods for auto travel

Conditions in 2030

Large Metrolink changes

- 126 trains per day (versus 37 per day currently)
- 16,300 trips per day using Riverside Co. stations
- 11,700 of these from Perris Valley
- Same commuter-oriented characteristics
- More difficult drive-access
 - South Perris to Riverside, 21 miles
 - 32 minutes (39 mph) today
 - 67 minutes (19 mph) in 2030

Low-cost alternative

- New express bus service to Riverside station
- Additional park/ride facilities
- Mixed-traffic operations
- An increase of 216 riders/day over No-Build
- Key limitation: long travel times because of congested highways

Proposed project

- 23-mile commuter rail line
- Six stations (5 park/ride with 1,800 spaces)
- Extension of the 91 line to downtown LA
- Travel times: Perris Valley to Riverside
 - 67 minutes by driving
 - 87 minutes by bus
 - 40 minutes by commuter rail

Metrolink ridership

 8,800 more weekday riders than in TSM

 User benefits: 3,100 hours/day saved

 79% by commuters; 83% by PV residents
 Key markets – Perris Valley to:

 Orange County: 1,000 hrs; ≈18 min/trip
 Los Angeles: 700 hrs; ≈29 min/trip
 Riverside: 400 hrs; ≈22 min/trip

Cost effectiveness
 Capital: \$180 million in 2007 dollars
 Added O&M cost: \$1.5 million/year
 Time savings: 850,000 hours/year
 \$22.40 per hour of time savings
 Competitive for federal funding

Risks (Some Thoughts)

Ridership and transportation benefits - Sources of risk? Very high growth projections Very large congestion increases Very large Metrolink service increases (NB) – Aspects that help contain risk Existing Metrolink ridership from Perris Valley Large Metrolink system, ridership, DATA Costs: from formal risk analysis

Travel Forecasting for New Starts

Summary

Rapid growth
Long-distance commutes
Difficult access to Metrolink system
Large time savings (total and per rider)
Low capital cost
Costs in scale with the benefits

15. Economic Development

SAFETEA-LU New Starts requirements
 FTA thoughts, activities
 Discussion / ideas

Requirements

SAFETEA-LU: Evaluate projects on:

"... a comprehensive review of its ... economic development effects, and public transportation supportive land use policies and future patterns."

Challenges

- Land use versus economic development
 - Need clearly distinguished definitions, measures
 - **So:**
 - Land use = attributes of the project setting
 - Econ-dev = changes because of the project

- User benefits (UBs) versus economic development benefits (EDBs)
 - Need to avoid double-counting mobility/accessibility
 - So: looking for clear evidence that a measurable portion of economic development impacts are separable and independent of user benefits

- Demonstrated impacts
 - Need to have analytical basis for EDBs
 - So:
 - Literature review
 - Apparently sparse evidence that transit station proximity, by itself, has consistent impacts on land prices (and by extension, development benefits)
 - Few existing studies distinguish the impacts of the project from the impacts of zoning changes, development incentives, and other policies that affect development

- Useful measure
 - Need a measure of EDBs that provides a reasonable accounting of benefits and disbenefits
 - So: concerns on "trip not taken" measurement
 - Location choice = f(travel costs, schools, amenities ...)
 - So, different choices \rightarrow different bundles of attributes
 - Relocation to location with lower travel costs cannot be evaluated solely on the basis of reduction in travel costs
 - Direct parallel to evaluating mode-shift benefits using a strict accounting of "time savings"

- Predictive tools
 - Need method for predicting development impacts and EDBs for individual projects in individual contexts
 - So: FTA will be evaluating existing predictive tools
 - Residential-location choice models
 - Workplace/employer-location choice models
 - Others?

NPRM

- Evaluate presence of EDB-supportive conditions
 - Opportunity: availability of land for (re)development
 - Market conditions: regional and corridor activity
 - Supporting policies: zoning, tax, & other
 - Accessibility impacts: consequence of the project
 - Permanence: characteristics of the project
- Premise: favorable conditions \rightarrow large EDBs
- Part of the measure of project <u>effectiveness</u>
- Continued standard allowance in <u>cost-effectiveness</u>

"Measures" document

- Rely on location choice models for predictions and measures of benefits
- Possible advantages
 - Project-specific quantification of EDBs
 - Possible inclusion in cost-effectiveness calculations
 - Probability that some projects are "above average" in that they have more EDBs than they get from the standard allowance (implications for others?)

FTA Activities

NPRM

 Receipt of formal comments; then ... ?

 FTA-sponsored applied research

 Literature review (→ FTA website)
 Kick-off: meeting of expert panel 10/2007
 Development of predictive tool(s)

 Ideas from travel forecasters?

16. Wrap-Up

Additional comments by participants
 FTA to-do list
 FTA objectives for travel forecasting in support of New Starts

Additional Comments

FTA To-do List

Research?
Written guidance?
Training?
Future workshop?
Other?

FTA Objectives

Travel forecasting for New Starts

 Sufficient data to inform technical work
 Meaningful testing of travel models
 Adequate QC and analysis of forecasts

– Understanding of project benefits