
Implementing Baraff & Witkin’s Cloth Simulation

David Pritchard

May 2003, with minor updates April 2012

1 Introduction

In April 2002, I implemented a cloth simulator based
on Baraff & Witkin’s paper [BW98] for a graduate an-
imation course taught by Michiel van de Panne at the
University of British Columbia. I later released that
simulator as an open-source project called Freecloth.
Over the following year, I improved the performance
of the simulator and fixed some major bugs.

The initial version of Freecloth had some major
bugs, and did not implement all parts of the original
paper. Newer versions have eliminated the bugs in
the simulator, but do not yet include all parts of the
original paper.

I will assume that you are familiar with Baraff &
Witkin’s paper, and I will not try to re-explain con-
cepts which are clearly presented there. For my own
work, I relied heavily upon a paper by Dean Macri
[Mac00], who attempted to interpret and implement
Baraff & Witkin’s paper. I will make reference to
Macri’s notation and some of his formulas, but his
paper is not necessary reading. I rederived all of
the formulas found in Macri’s paper, and verified my
derivation against Macri’s. Initially, I found a few
minor typographical errors in his paper, but my for-
mulas were generally the same.

As my implementation progressed, I found more
major errors in Macri’s paper. The largest error oc-
curred when he calculated the derivatives of the bend
condition. I give a corrected version of this equation
in (54) and (57).

In this paper, I will attempt to explain obsta-
cles that I encountered while implementing Baraff &
Witkin’s paper.

2 Notation

In this paper, I will use the symbol I to denote an
identity matrix. The symbol Is refers to a vector
containing the sth column of the identity matrix. To
denote the skew-symmetric matrix form of a vector
cross product, I will use the notation

S(v) =

 0 −vz vy
vz 0 −vx
−vy vx 0

I will also define the vector Ss(v) as the transpose

of the sth row of S(v). Ss is a column vector, but
represents a row in the original S matrix. I will use
a hat (e.g. ŵu) to refer to a normalised vector of
unit length, and omit the hat (e.g. wu) for an un-
normalised vector. This is the opposite convention to
that used in my original project report.

I will retain Baraff & Witkin’s notation and use x
to refer to the positions of points, not p as in Macri’s
paper. Furthermore, I will refer to the points of a
triangle as x0, x1 and x2, and not use the i, j and
k subscripts used by the other two papers. For the
points of an edge, I will likewise use subscripts of 0,
1, 2, and 3 rather than the h, i, j and k subscripts
used by Macri.

When referring to points, I will use xm and xn to
refer to two possibly distinct points. I will use the
subscript ms to refer to the to the sth component of
xm, and likewise the subscript nt for the tth compo-
nent of xn. I will also sometimes use subsubscripts
of x, y and z to refer to the components.

I like to think of the derivatives in this paper in
terms of their components. Both Baraff & Witkin
and Macri differentiate with respect to a vector in

1

their papers, giving quantities like

∂C

∂xm
=

∂C
∂xmx
∂C
∂xmy
∂C
∂xmz

or

∂v

∂xm
=

∂vx

∂xmx

∂vy

∂xmx

∂vz

∂xmx
∂vx

∂xmy

∂vy

∂xmy

∂vz

∂xmy

∂vx

∂xmz

∂vy

∂xmz

∂vz

∂xmz

This type of formula is common in some areas of

graphics; for example, the Jacobian matrix has this
form. However, what happens when we take the sec-
ond derivative of v? It will yield a third-order tensor,
a 3× 3× 3 linear algebraic quantity. However, this is
unnecessarily complicated, especially for people (like
me) who never covered tensors in their undergraduate
education. In this paper, I will try to avoid differen-
tiation with respect to a vector. Instead, I will do
most of the work on a component-by-component ba-
sis, using only differentiation with respect to a scalar.
Using this approach, I will only ever need to use vec-
tors and scalars, not matrices or higher-order ten-
sors. This makes operations such as cross-products
and dot-products straightforward.

Some of Baraff & Witkin’s formulas involve tak-
ing a second derivative with respect to two vectors.
For these, just remember the layout of the resulting
matrix. For example,

∂2C

∂xm∂xn
=

∂C
∂xmx

xnx

∂C
∂xmy

xnx

∂C
∂xmz

xnx

∂C
∂xmx

xny

∂C
∂xmy

xny

∂C
∂xmz

xny

∂C
∂xmx

xnz

∂C
∂xmy

xnz

∂C
∂xmz

xnz

3 Condition Functions

Baraff & Witkin used condition functions as an in-
direct way of defining energy and forces. Their con-
dition functions are almost the same as energy for-
mulas, since E = k

2C
TC, where C is the condition

function. For the scalar condition functions (shear

and bend), E = k
2C

2, and the condition function is
hence basically just the squart-root of the energy, ex-
cept that it can be positive or negative.

The condition functions were defined explicitly in
the paper. Energy and forces can also be easily calcu-
lated, if the derivatives of the condition functions are
known. However, the paper didn’t provide explicit
equations for the derivatives or second derivatives.

Macri made a good attempt at deriving the equa-
tions for the derivatives and second derivatives. I
found two major shortcomings in his approach, how-
ever. First, he made reference to tensors and other
mathematical constructs that aren’t really necessary
for the derivation. Second, I found an error in his
derivation for the bend condition.

3.1 Per-Triangle Quantities

To begin, I will define a few quantities that will
help with explanation of the stretch and shear con-
ditions. These quantities are defined for a triangle
using points x0, x1, and x2. The triangle’s area in
u/v space is given by

a =
1

2

∥∥∥∥∥∥
∆u1

∆v1
0

×
∆u2

∆v2
0

∥∥∥∥∥∥ (1)

The ŵu and ŵv vectors represent the directions of
the u and v axes in world space, as seen within a
single triangle. They are defined by

ŵu =
wu∥∥wu

∥∥ ŵv =
wv∥∥wv

∥∥ (2)

wu =
(x1 − x0)∆v2 − (x2 − x0)∆v1

∆u1∆v2 −∆u2∆v1
(3)

wv =
−(x1 − x0)∆u2 + (x2 − x0)∆u1

∆u1∆v2 −∆u2∆v1
(4)

The first derivatives of the unnormalised vectors
wu and wv are given by

2

∂wu

∂xm
=
∂wux

∂xmx

I (5)

∂wux

∂x0x

=
∆v1 −∆v2

∆u1∆v2 −∆u2∆v1
(6)

∂wux

∂x1x

=
∆v2

∆u1∆v2 −∆u2∆v1
(7)

∂wux

∂x2x

=
−∆v1

∆u1∆v2 −∆u2∆v1
(8)

∂wv

∂xm
=
∂wvx

∂xmx

I (9)

∂wvx

∂x0x

=
∆u2 −∆u1

∆u1∆v2 −∆u2∆v1
(10)

∂wvx

∂x1x

=
−∆u2

∆u1∆v2 −∆u2∆v1
(11)

∂wvx

∂x2x

=
∆u1

∆u1∆v2 −∆u2∆v1
(12)

The second derivatives of wu and wv are all zero.

3.2 Stretch Condition

Baraff & Witkin define the stretch condition function
as a vector C. Two special parameters are defined
for stretch, bu and bv. These represent the desired
stretchiness of the cloth in the u and v directions. A
bu value below one will result in the cloth trying to
compress in the u direction, while a bu value above
one will result in the cloth trying to stretch in the u
direction.

C =

(
Cu
Cv

)
=α

(∥∥wu

∥∥− bu∥∥wv

∥∥− bv
)

(13)

Baraff & Witkin defined α = a, the area of the
triangle. We define α = a

3
4 , for reasons described

later.

The first and second derivatives of the stretch con-
dition function are

∂Cu
∂xm

= α
∂wux

∂xmx

ŵu (14)

∂2Cu
∂xm∂xn

=
α∥∥wu

∥∥ ∂wux

∂xmx

∂wux

∂xnx

(
I− ŵuŵ

T
u

)
(15)

∂Cv
∂xm

= α
∂wvx

∂xmx

ŵv (16)

∂2Cv
∂xm∂xn

=
α∥∥wv

∥∥ ∂wvx

∂xmx

∂wvx

∂xnx

(
I− ŵvŵ

T
v

)
(17)

These second derivatives exhibit some symmetry,

since ∂2Cu

∂xms∂xnt
= ∂2Cu

∂xnt∂xms
. Consequently, the 3× 3

matrix ∂2Cu

∂xm∂xn
= ∂2Cu

∂xn∂xm

T
. To avoid any tensors

when applying Baraff & Witkin’s equation (8) to the
shear equations, remember that

∂2C(x)

∂xm∂xn
C(x) =

∂2Cu
∂xm∂xn

Cu +
∂2Cv

∂xm∂xn
Cv (18)

3.3 Shear Condition

Baraff & Witkin define the shear condition function
as a scalar. This scalar is essentially the dot product
of the u axis with the v axis in world space. If no
shear is occurring, the axes are perpendicular and
the condition function is zero. If shear is occurring,
the condition function is equivalent to the cosine of
the angle between them, weighted by the triangle’s
area in u / v space.

C = αwu ·wv (19)

Baraff & Witkin’s condition assumes that wu and
wv are approximately unit vectors. If bu and bv are
both equal to one, then this approximation is a fair
one. If, however, bu or bv are not equal to one, the ap-
proximation may give rise to some strange behaviour.
I have not had a chance to investigate the effects of
varying bu or bv.

Since we know the derivatives of wu and wv, taking
the derivative of this condition function is trivial.

3

∂C

∂xms

= α

(
∂wu

∂xms

·wv + wu ·
∂wv

∂xms

)
(20)

= α

(
∂wux

∂xmx

wvs + wus

∂wvx

∂xmx

)
(21)

∂2C

∂xms
∂xnt

=α

(
∂2wu

∂xms
∂xnt

·wv +
∂wu

∂xms

· ∂wv

∂xnt

+

∂wu

∂xnt

· ∂wv

∂xms

+ wu ·
∂2wu

∂xms
∂xnt

)
(22)

=

{
α
(
∂wux

∂xmx

∂wvx

∂xnx
+

∂wux

∂xnx

∂wvx

∂xmx

)
if s = t,

0 otherwise.

(23)

These second derivatives exhibit even more sym-
metry than the stretch condition. Like the stretch

condition, ∂2C
∂xm∂xn

= ∂2C
∂xn∂xm

T
but beyond that, the

∂2C
∂xm∂xn

is actually just an identity matrix multiplied
by a scalar.

3.4 Bend Condition

Baraff & Witkin define the bend condition in terms
of two adjoining triangles. I have labelled the unit
normals of these triangles as n̂A and n̂B , rather than
Baraff & Witkin’s n1 or n2. The unit vector parallel
to their common edge is labelled ê. Quantities asso-
ciated with the normals or the common edge receive
a superscript A, B or e.

n̂A =
nA∥∥nA∥∥ n̂B =

nB∥∥nB∥∥ ê =
e∥∥e∥∥ (24)

nA = (x2 − x0)× (x1 − x0) (25)

nB = (x1 − x3)× (x2 − x3) (26)

e = x1 − x2 (27)

The scalar bend condition C is defined quite simply
as the angle between the two edges, θ.

cos θ = n̂A · n̂B (28)

sin θ = (n̂A × n̂B) · ê (29)

C = θ = arctan
sin θ

cos θ
(30)

Macri defined C using the arccos function, which is
incorrect and will only yield positive values for θ. My
definition of C will yield both positive and negative
values if implemented using the atan2 function.

In order to find the derivatives of C, we need the
derivatives of the quantities seen so far. The first and
second derivatives of nA, nB and e are shown below,
using auxiliary variables qm. The derivatives of qm
are straightforward to derive.

∂nA

∂xms

= Ss(q
A
m) (31)

∂nB

∂xms

= Ss(q
B
m) (32)

∂e

∂xms

= qemIs (33)

qA = {x2 − x1,x0 − x2,x1 − x0,0} (34)

qB = {0,x2 − x3,x3 − x1,x1 − x2} (35)

qe = {0, 1,−1, 0} (36)

∂2nA

∂xms
∂xnt

= Ss

(
∂qAm
∂xnt

)
(37)

∂2nB

∂xms
∂xnt

= Ss

(
∂qBm
∂xnt

)
(38)

∂2e

∂xms
∂xnt

= 0 (39)

Using Baraff & Witkin’s assumption that the nor-
mal and edge vectors have constant magnitude,

4

∂n̂A

∂xms

=
1∥∥nA∥∥ ∂nA

∂xms

(40)

∂n̂B

∂xms

=
1∥∥nB∥∥ ∂nB∂xms

(41)

∂ê

∂xms

=
1∥∥e∥∥ ∂e

∂xms

(42)

∂2n̂A

∂xms
∂xnt

=
1∥∥nA∥∥ ∂2nA

∂xms
∂xnt

(43)

∂n̂B

∂xms

xnt =
1∥∥nB∥∥ ∂2nB

∂xms
∂xnt

(44)

∂2ê

∂xms
∂xnt

= 0 (45)

Given the derivatives of the normal and edge vec-
tors, the first and second derivatives of cos θ and sin θ
are trivial to calculate.

∂ cos θ

∂xms

=
∂n̂A · n̂B

∂xms

(46)

=
∂n̂A

∂xms

· n̂B + n̂A · ∂n̂
B

∂xms

(47)

∂ sin θ

∂xms

=
∂(n̂A × n̂B) · ê

∂xms

(48)

=

(
∂n̂A

∂xms

× n̂B + n̂A × ∂n̂B

∂xms

)
· ê

+ (n̂A × n̂B) · ∂ê

∂xms

(49)

∂2 cos θ

∂xms
∂xnt

=
∂2n̂A

∂xms
∂xnt

· n̂B +
∂n̂B

∂xnt

· ∂n̂
A

∂xms

+
∂n̂A

∂xnt

· ∂n̂
B

∂xms

+ n̂A · ∂2n̂B

∂xms
∂xnt

(50)

∂2 sin θ

∂xms
∂xnt

=

(
∂2n̂A

∂xms
∂xnt

× n̂B +
∂n̂A

∂xms

× ∂n̂B

∂xnt

+
∂n̂A

∂xnt

× ∂n̂B

∂xms

+ n̂A × ∂2n̂B

∂xms∂xnt

)
· ê

+

(
∂n̂A

∂xms

× n̂B + n̂A × ∂n̂B

∂xms

)
· ∂ê

∂xnt

+

(
∂n̂A

∂xnt

× n̂B + n̂A × ∂n̂B

∂xnt

)
· ∂ê

∂xms

+ (n̂A × n̂B)
∂2ê

∂xms
∂xnt

(51)

Finally, we can differentiate equation (30) to obtain
the derivatives of C.

∂C

∂xms

=
∂θ

∂xms

(52)

=
1

sin2 θ + cos2 θ

×
(

cos θ
∂ sin θ

∂xms

− sin θ
∂ cos θ

∂xms

)
(53)

= cos θ
∂ sin θ

∂xms

− sin θ
∂ cos θ

∂xms

(54)

Note that the second derivative formula below starts
from (53), including the denominator term.

5

∂2C

∂xms
∂xnt

=
∂2θ

∂xms
∂xnt

(55)

=
1

(sin2 θ + cos2 θ)2

×

[
(sin2 θ + cos2 θ)

(
cos θ

∂2 sin θ

∂xms∂xnt

− sin θ
∂2 cos θ

∂xms∂xnt

)
+ (sin2 θ − cos2 θ)

(
∂ sin θ

∂xms

∂ cos θ

∂xnt

+
∂ cos θ

∂xms

∂ sin θ

∂xnt

)
+ 2 sin θ cos θ

(
∂ cos θ

∂xms

∂ cos θ

∂xnt

− ∂ sin θ

∂xms

∂ sin θ

∂xnt

)]
(56)

= cos θ
∂2 sin θ

∂xms
∂xnt

− sin θ
∂2 cos θ

∂xms
∂xnt

+ (sin2 θ − cos2 θ)

(
∂ sin θ

∂xms

∂ cos θ

∂xnt

+
∂ cos θ

∂xms

∂ sin θ

∂xnt

)
+ 2 sin θ cos θ

(
∂ cos θ

∂xms

∂ cos θ

∂xnt

− ∂ sin θ

∂xms

∂ sin θ

∂xnt

)
(57)

In a manner similar to the stretch condition,
∂2C

∂xms∂xnt
= ∂2C

∂xnt∂xms
and the 3 × 3 matrix is sym-

metric. The second derivatives of cos θ and sin θ are
likewise symmetric.

4 Verification

Macri didn’t describe any way of verifying the cor-
rectness of his derivations or implementation. Once I
had initially implemented the simulator, I found bugs
but had no way of determining where an error was
occurring. To address this, I used numeric deriva-
tives.

For example, suppose that we need to verify the

calculation of ∂f(x)
∂x . Our program calculates the

derivative using an analytic formula, which we’ll call
f ′a(x). The derivative can also be calculated numeri-
cally:

f ′n(x) =
f(x+ h)− f(x)

h

If f ′a(x) = f ′n(x), then the implementation and ana-
lytic formula give the correct results.

Verification is a little bit trickier for the bend con-
dition. Here, we can’t just use a normal derivative,
since we have to differentiate under the assumption
that the vectors have constant magnitude. Suppose

that we want to verify the derivative ∂n̂A

∂xms
. Let

nA(xms
) represent the normal with point m at po-

sition xms
, and nA(xms

+ hIs) represent the normal
once point m’s sth component is shifted by h. The
unit normals are then given by

n̂A(xms
) =

nA(xms)∥∥nA(xms
)
∥∥

n̂A(xms
+ hIs) =

nA(xms + hIs)∥∥nA(xms
)
∥∥

And the numeric derivative is given by(
n̂An
)′

=
n̂A(xms

+ hIs)− n̂A(xms
)

h

The main trick is to normalise the shifted edge and
normal vectors using the magnitude of the unshifted
vector.

To be honest, I don’t know why numeric derivatives
can’t be used for everything. I suspect that they may
be less robust than analytic derivatives, and there
may be a performance tradeoff involved, but I haven’t
confirmed these suspicions.

5 Discussion

5.1 Macri’s Error

Equations (54) and (57) are very different from the
equations obtained by Macri. Macri differentiated
equations (28) and (29) and then rearranged to ob-
tain two different formulas for ∂C

∂xm
:

∂C

∂xm
= − 1

sin θ

∂ cos θ

∂xm

and

∂C

∂xm
=

1

cos θ

∂ sin θ

∂xm

6

Likewise, Macri obtained two different formulas

for ∂2C
∂xm∂xn

. Macri suggested choosing the first set
of equations if |sin θ| > |cos θ|. The rationale for
this choice is presumably to avoid numerical prob-
lems and division by zero when sin θ = 0. In order
for the transition from one regime to the other to
be smooth, they should be equal at some changeover
point. However, it is not evident that there exists any
changeover point where the two formulas are equal.
Additionally, neither of these equations matches the
numeric derivative of C. My equations, however, give
a result identical to the numeric derivative.

Macri’s approach fails because he doesn’t consider
the transition between his two bend formulas. My
approach succeeds in these cases because it relies on a
single formula for all bend angles, instead of switching
between formulas at critical bend points.

I derived equation (54) by the following logic. De-
fine y = sin θ

cos θ , and θ = arctan y. Then, ∂θ
∂xms

=

cos2 θ ∂y
∂xms

. Differentiating y, we obtain

∂y

∂xms

=
cos θ ∂ sin θ

∂xms
− sin θ ∂ cos θ

∂xms

cos2 θ

and thus,

∂θ

∂xms

= cos θ
∂ sin θ

∂xms

− sin θ
∂ cos θ

∂xms

The derivation of (57) follows directly from dif-
ferentation of this equation. In some ways, this defi-
nition feels a little circular due to the introduction of
the artifical arctan term. I believe that the derivation
is nevertheless correct. One area of serious concern,
however, is the fact that the second derivative does

not exhibit typical symmetry: ∂2θ
∂xms∂xnt

6= ∂2θ
∂xnt∂xms

in general.

5.2 Baraff & Witkin’s Errors

I believe that there is a very small error in equation
(14) of Baraff & Witkin’s paper: the z term should
be scaled by h.

There is an error in their definition of ∂C
∂t , just

above equation (11). They define it as

∂C

∂t
=

(
∂C

∂x

)T
∂x

∂t

However, the condition function C is a function of the
position of several particles x, and the paper does
not specify which particle to choose. For my early
implementations, I defined a different ∂C

∂t for each
particle, using

∂Cm

∂t
=

(
∂C

∂xm

)T
∂xm
∂t

.

However, this yielded incorrect results, especially
when calculating the damping forces for the bend
condition, resulting in frequent instability. Later,
I realised that correct application of the chain rule
should yield a single ∂C

∂t for all particles, of the form

∂C

∂t
=
∑
m

(
∂C

∂xm

)T
∂xm
∂t

. (58)

The sum should be over the particles that influence
C. Visually, this yields vastly better results.

The final error in their paper is related to scale-
invariance. Ideally, the parameters used for the sim-
ulation should be independent of the tesselation of
the surface. For example, if you run the simulation
with a 10×10 mesh and a 20×20 mesh and the same
parameters, it should look basically the same. How-
ever, using Baraff & Witkin’s choice of α = a, this
does not occur. I looked at the math for the specific
case where the number of particles is doubled in u
and v (e.g., from 10 × 10 to 20 × 20). In this case,
the gravity force on each original particle decreases
by a factor of four (since the mass of the surrounding
triangles decreases by four). However, the (strong)
stretch and shear forces decrease by a factor of eight.
These forces are responsible for most of the resistance
against gravity, and consequently the cloth sags sub-
stantially as the particle density is increased.

However, by using α = a
3
4 , the stretch and shear

forces also decrease by a factor of four, as expected.
The formula is not as intuitively obvious as α = a,
and I have not done tests with irregularly triangu-
lated meshes, but it does work much better for regu-
larly triangulated meshes.

7

5.3 Unit Magnitude Approximation

During my original development, I chased down one
wrong alley while looking for the error in my (and
Macri’s) derivations. I was highly suspicious of one
of Baraff & Witkin’s approximations, where they as-
sume that vectors’ magnitudes are constant. This
occurs in both the shear condition derivation and the
bend condition derivation. I went through and red-
erived all of the formulas without this assumption,
and obtained the formulas given in the appendix. Af-
ter all of this work, there was still a problem, which
proved to be the error in Macri’s versions of equations
(54) and (57).

After finding this error in Macri’s work, I returned
to the unit magnitude issue. I compared the results of
my simulation using the formulas given in the body
of the paper (using Baraff & Witkin’s approxima-
tion) to the results using the formulas given in the
appendix (without the approximation). In my test
case, I found that the approximation gave more pleas-
ing results! In total, stretch energy was halved, and
shear and bend energy dropped by a small amount.
The formulas for both stretch and bend energy are
unchanged between the two cases, so this is a valid
comparison of the energy in the cloth. The formula
for shear energy is slightly changed by removing the
unit magnitude approximation, however, so compar-
isons of energy aren’t very meaningful.

To be honest, I was surprised that such a drastic
change to the formulas had a relatively small effect on
the final result. I suspect that there may be a lot of
room for optimisation of Baraff & Witkin’s system,
achieving comparable results at less computational
cost.

In the interests of presenting a direct implementa-
tion of Baraff & Witkin’s paper, and on the basis of
the better results, I have therefore presented the for-
mulas with the constant magnitude approximation.

5.4 Parameters

For parameters, I adopted values that gave good re-
sults. I looked at Alias | Wavefront’s Maya cloth
software, but I suspect that they scale their param-
eters internally by an unknown amount. For damp-

Name Symbol Value
Stretch force strength kstretch 5.0× 103

Shear force strength kshear 0.5× 103

Bend force strength (u) kbendu 0.01× 10−3

Bend force strength (v) kbendv 0.01× 10−3

Damping force strength kdamp 0.2
Rest stretch (u) bu 1
Rest stretch (v) bv 1
Time step h 0.02
Density ρ 0.1
Gravity g 9.81

Table 1: Parameters used for simulation.

ing forces, I multiplied the associated regular force’s
constant by the damping constant (e.g. kstretchkdamp
was used to damp stretch forces).

6 Results

To test out the simulator, I used a variety of
cloth sizes and constraints. These can be seen at
the Freecloth website http://davidpritchard.org/
freecloth, in the screenshots section.

The simulator’s performance is reasonable, with a
66×66 cloth typically requiring about thirty to forty
minutes of computation per second of animation on
a 3 GHz Pentium IV system using a step size of 0.02.
Smaller cloth sizes are much faster, and there is still
a fair bit of room for optimisation, especially in terms
of adaptive timesteps.

My implementation does exhibit some instability,
but almost always works with a step size of 0.01 sec-
onds; sometimes, a smaller stepsize is needed.

7 Conclusion

Baraff & Witkin’s paper does indeed provide a solid
framework for cloth simulation. It appears to allow
relatively large timesteps, and with suitable optimi-
sation should run quite quickly.

Hopefully, this paper should clear up some of the
confusions of both Macri’s paper, and the original

8

http://davidpritchard.org/freecloth
http://davidpritchard.org/freecloth

paper. Implementing Baraff & Witkin’s paper should
be straightforward using the equations shown here.

8 Acknowledgement

This work was supported in part by a scholarship
from the Natural Sciences and Engineering Research
Council of Canada, and by the British Columbia Ad-
vanced Systems Institute.

Thanks to Sebastian Lipponer for pointing out a
correction to the bend condition formulas.

References

[BW98] D. Baraff and A. Witkin. Large steps in
cloth simulation. In ACM SIGGRAPH Con-
ference Proceedings, pages 43–54, 1998.

[Mac00] D. Macri. Real-time cloth. In Game Devel-
opers Conference Proceedings, 2000.

9

A Appendix

The equations given in this appendix are replace-
ments for certain equations given in the body of the
paper. By using these, several of Baraff & Witkin’s
approximations are avoided. However, my tests show
that the results are less pleasing.

A.1 Per-Triangle Quantities

The first and second derivatives of the normalised
vectors ŵu and ŵv are

∂ŵu

∂xms

=
1∥∥wu

∥∥ ∂wux

∂xmx

(Is − ŵus
ŵu) (A.1)

∂ŵv

∂xms

=
1∥∥wv

∥∥ ∂wvx

∂xmx

(Is − ŵvsŵv) (A.2)

∂2ŵu

∂xms∂xnt

=− 1∥∥wu

∥∥ ∂wux

∂xmx

(
ŵus

∂ŵu

∂xnt

+
∂ŵus

∂xnt

ŵu

)
− ∂wux

∂xmx

∂wux

∂xnx

(Is − ŵus
ŵu)ŵut∥∥wu

∥∥2
(A.3)

∂2ŵv

∂xms
∂xnt

=− 1∥∥wv

∥∥ ∂wvx

∂xmx

(
ŵvs

∂ŵv

∂xnt

+
∂ŵvs

∂xnt

ŵv

)
− ∂wvx

∂xmx

∂wvx

∂xnx

(Is − ŵvsŵv)ŵvt∥∥wv

∥∥2
(A.4)

A.2 Shear Condition

If we remove the assumption that the ŵu and ŵv

vectors are unstretched, then equation (19) should
be replaced with

C = αŵu · ŵv (A.5)

∂C

∂xms

=α

(
∂ŵu

∂xms

· ŵv + ŵu ·
∂ŵv

∂xms

)
(A.6)

∂2C

∂xms
∂xnt

=α

(
∂2ŵu

∂xms
∂xnt

· ŵv +
∂ŵu

∂xms

· ∂ŵv

∂xnt

+
∂ŵu

∂xnt

· ∂ŵv

∂xms

+ ŵu ·
∂2ŵu

∂xms
∂xnt

)
(A.7)

A.3 Bend Condition

If we remove the assumption that the normal and
edge vectors have constant length, we must replace
equations (40) and (43) with those shown below.

∂n̂A

∂xms

=
(
I− n̂A(n̂A)T

) Ss(qAm)∥∥nA∥∥ (A.8)

∂n̂B

∂xms

=
(
I− n̂B(n̂B)T

) Ss(qBm)∥∥nB∥∥ (A.9)

∂ê

∂xms

= (I− êêT)
qemIs∥∥e∥∥ (A.10)

∂2n̂A

∂xms∂xnt

=−

(
∂n̂A

∂xnt

(n̂A)T + n̂A
(
∂n̂A

∂xnt

)T)
Ss(q

A
m)∥∥nA∥∥

+
I− n̂A(n̂A)T∥∥nA∥∥2

(∥∥nA∥∥Ss(∂qAm
∂xnt

)
−
(
St(q

A
n) · n̂A

)
Ss(q

A
m)

)
(A.11)

10

∂2n̂B

∂xms∂xnt

=−

(
∂n̂B

∂xnt

(n̂B)T + n̂B
(
∂n̂B

∂xnt

)T)
Ss(q

B
m)∥∥nB∥∥

+
I− n̂B(n̂B)T∥∥nB∥∥2

(∥∥nB∥∥Ss(∂qBm
∂xnt

)
−
(
St(q

B
n) · n̂B

)
Ss(q

B
m)

)
(A.12)

∂2ê

∂xms∂xnt

=−

(
∂ê

∂xnt

êT + ê

(
∂ê

∂xnt

)T)
Ss(q

e
m)∥∥e∥∥

− I− êêT∥∥e∥∥2 qemq
e
nêtIs (A.13)

11

	Introduction
	Notation
	Condition Functions
	Per-Triangle Quantities
	Stretch Condition
	Shear Condition
	Bend Condition

	Verification
	Discussion
	Macri's Error
	Baraff & Witkin's Errors
	Unit Magnitude Approximation
	Parameters

	Results
	Conclusion
	Acknowledgement
	Appendix
	Per-Triangle Quantities
	Shear Condition
	Bend Condition

