

Principles of Information Visualization Tutorial – Part 1 Design Principles

Prof Jessie Kennedy Institute for Informatics & Digital Innovation

Overview

- Fundamental principles of graphic design and visual communication
 - > help you create more effective information visualizations.
- Use of salience, colour, consistency and layout
 - communicate large data sets and complex ideas with greater immediacy and clarity.

Institute for Informatics & Digital Innovation

Why Visualise?

To see what's in the data

Information Visualization

- 2 main objectives
- Data analysis
 - understand the data
 - derive information from them
 - involves comprehensivity
- Communication
 - ➢ of information
 - involves simplification

J Bertin, Semiology of Graphics, - Brief Presentation of Graphics, 2004

- Need to understand
 - > the properties of the data or information
 - \succ the properties of the image
 - \succ the rules mapping data to images

- Need to understand
 - > the properties of the data or information
 - \succ the properties of the image
 - \succ the rules mapping data to images

Types of Data

- Nominal (labels or types)
 - Sex: Male, Female,,
 - ➢ Genotype: AA, AT, AG...

Ordinal

- Days: Mon, Tue, Wed, Thu, Fri, Sat, Sun
- Abundance: abundant common rare

Quantitative

Physical measurements: temperature, expression level

Data Type Taxonomy

- ► 1D e.g. DNA sequences
- ► Temporal e.g. time series microarray expression
- ► 2D e.g. distribution maps
- ► 3D e.g. Anatomical structures
- ► nD e.g. Fisher's Iris data set
- Trees e.g Linnean taxonomies, phylogenies
- ► Networks e.g. Metabolic pathways
- ► Text and documents e.g. publications

B. Shneiderman, The eyes have it: A task by data type taxonomy for information visualization, 1996

- Need to understand
 - > the properties of the data or information
 - the properties of the image
 - \succ the rules mapping data to images

Theory of Graphics

Application of human perception

- > understand and memorize forms in an image
- > XY dimensions of the plane and variation in Z dimension

Correspondence between data and image

Level of perception required by objective

Mobility or immobility of the image

J Bertin, Semiology of Graphics, - Brief Presentation of Graphics, 2004

Semiology of Graphics

visual encoding

- points, lines, areas patterns, trees/networks, grids
 positional: XY
 - 1D, 2D, 3D
- ➤ retinal: Z
 - size, lightness, texture, colour, orientation, shape,
- ➤ temporal:

animation

Language of Graphics

- Graphics can be thought of as forming a sign system:
 - > Each mark (point, line, or area) represents a data element.
 - Choose visual variables to encode relationships between data elements

difference, similarity, order, proportion

only position supports all relationships

Huge range of alternatives for data with many attributes

➢ find images that express and effectively convey the information.

Accuracy of Quantitative Perceptual Tasks

Cleveland, W.S. & McGill, R. Science 229, 828–833 (1985).

Gestalt Effects

Visual system tries to structure what we see into patterns

Gestalt is the interplay between the parts and the whole
 "The whole is 'other' than the sum of its parts." – Kurt Koffka

Gestalt Laws/Principles

Principle of Simplicity

 Every pattern is seen such that the resulting structure is as simple as possible

- Different projections of same cube
- Perceived as 2 or 3 D
- Depending on the simpler interpretation

Principle of Proximity

Things that are near to each other appear to be grouped together

Principle of Similarity

Similar things appear to be grouped together

Variable Opacity for Clarity

Use of similarity of stroke and opacity to clarify image
 Layers in the image

Principle of Closure

The law of closure posits that we perceptually close up, or complete, objects that are not, in fact, complete

Principle of Connectedness

Things that are physically connected are perceived as a unit

Stronger than colour, shape, proximity, size

Principle of Good Continuation

- Points connected in a straight or smoothly curving line are seen as belonging together
 - Ines tend to be seen as to follow the smoothest path

Principle of Common Fate

Things that are moving in the same direction appear to be grouped together

Principle of Familiarity

Things are more likely to form groups if the groups appear familiar or meaningful

Figure-Ground & Smallness

Smaller areas seen as figures against larger background

Surroundedness

Principle of Symmetry

The principle of symmetry is that, the symmetrical areas tend to be seen as figures against the asymmetrical background.

3D Effect

Context affects perceptual tasks

Comparing values

- ➤ Length
- Curvature
- > Area
- > 2.5D shape
- Position in 2.5D

Ambiguous Information: Length

Muller-Lyer

Ambiguous Information: Length

Muller-Lyer

Horizontal-Vertical Illusion

Ambiguous Information: Curvature

Tollansky

Ambiguous Information: Area (Context)

Adapted from Shepard R N, 1990 Mind Sights: Original Visual Illusions, Ambiguities, and other Anomalies (

Adapted from Shepard R N, 1990 Mind Sights: Original Visual Illusions, Ambiguities, and other Anomalies (

Shaping our Institute for digital future Informatics & Digital Innovation Ambiguous Information: Position in 2.5D space

Necker Cube

Preattentive Visual Features

- the ability of the low-level human visual system to rapidly identify certain basic visual properties
- a unique visual property e.g., colour red allows it to "pop out"
- aids visual searching

Preattentive Visual Features

Some more effective than others

Preattentive Visual Features

Adapted from Perception in visualization C. Healey, : http://www.csc.ncsu.edu/faculty/healey/PP/

More than 2 Preattentive visual features

A target made up of a combination of non-unique features normally cannot be detected preattentively

- spot the red square
- difficult to detect
- serial search required

Adapted from Perception in visualization C. Healey, : http://www.csc.ncsu.edu/faculty/healey/PP/

Boundary detection

Horizontal boundary

Vertical boundary

Adapted from Perception in visualization C. Healey, : http://www.csc.ncsu.edu/faculty/healey/PP/

Region tracking

Use of preattentive features

target detection:

users rapidly and accurately detect the presence or absence of a "target" element with a unique visual feature within a field of distractor elements

boundary detection:

users rapidly and accurately detect a texture boundary between two groups of elements, where all of the elements in each group have a common visual property

region tracking:

- users track one or more elements with a unique visual feature as they move in time and space, and
- counting and estimation:
 - users count or estimate the number of elements with a unique visual feature.

Colour

"Colour used poorly is worse than no colour at all" Edward Tufte

- ➤ "Above all, do no harm"
- > colour can cause the wrong information to stand out and
- > make meaningful information difficult to see.

Colour space

- A colour space is mathematical model for describing colour.
 - ➢ RGB, HSB, HSL, Lab and LCH
- RGB is the most common in computer use,
 - but least useful for design
 - our eyes do not decompose colours into RGB constituents
- HSV, describes a colour in terms of its hue, saturation and value (lightness),
 - > models colour based on intuitive parameters
 - ➤ more useful.

Figs. Courtesy of S Rogers, ONS

Brewer Palettes

 Brewer palettes (colorbrewer.org) provide a range of palettes based on HSV model which make life easier for us....

Fig. Courtesy of M. Krzwinski,

recolored with Brewer palettes

Conversion to Grey scale

Ensure chosen colour set works well in grey scale

Sequential palette works well here

HSB DESATURATION

Fig. Courtesy of M Krzywinski

Trouble with perceptual colour....

Figs. Courtesy of S Rogers, ONS

Context Affects Perceived Colour

Figs. Courtesy of S Rogers, ONS

Colour & Accessibility....

Accessibility (W3C): 10-20% of population are red/green colour blind. (74? 21? No number at all?)....

Colour Blindness

8% males of USA descent

Red-green

Red-green

Blue-yellow

Μ

Μ

Μ

L

L

L

NORMAL VISION

PROTANOPIA

DEUTERANOPIA

TRITANOPIA

S

S

S

color receptors

Shaping our digital future

BioVis Example: Immunofluorescence images

red-green image of P2Y1 receptor and migrating granule neurons,

- effectively remapped to
- magenta-green using the channel mixing method.

NORMAL VISION red-green palette DEUTERANOPIA PROTANOPIA P7 cgl P7 cgl P7 cgl

magenta-green palette

Normal Protanope Deuteranope

Gabriel Landini & D Giles Perryer, Image recolouring for colour blind observers

same colours

From Data to Visualization...

- The properties of the data or information
- The properties of the image
- The rules mapping data to images

Encoding Schemes

Adapted from Mackinlay J (1986) Automating the design of graphical presentations of relational information.

Mapping data types to encoding

Quantitative	Ordinal		Nominal
Position	 Position		Position
Length	Density		Hue
Angle	Saturation		Texture
Slope	Hue	λ	Connection
Area	Texture		Containment
Volume	Connection		Density
Density	Containment		Saturation
Saturation	Length		Shape
Hue	Angle		Length
Texture	Slope		Angle
Connection	Area		Slope
Containment	Volume	(Area
Shape	Shape		Volume

Mackinlay J (1986) Automating the design of graphical presentations of relational information.